
Wfmm User’s Guide

This user guide documents the basics of how to use the code provided for implementing the Bayesian

wavelet-based functional mixed models methodology introduced in Morris and Carroll (2006). The

code implements the Markov Chain Monte Carlo (MCMC) procedure described in Section 5 of the

paper and outputs posterior samples for many model quantities.

Sample program call (from DOS window):
wfmm input.mat output.mat > log_file.log

The wfmm executable takes two arguments: an input filename or full filepath (represented above by

input.mat)and and output filename (output.mat). Log information is written to standard out, which can

be redirected to a log file.

Input

The input file (“input.mat” in the call) is in Matlab file format and can specify the raw data matrix Y

and structures model, basis_specs, MCMCspecs, and PostProcessSpecs that specify the model and

parameters controlling the processing.

Array dimensions of input and output variables are determined by the following parameters:

N - Number of data curves (rows in Y).

T - Number of samples of each data curve (columns of Y).

K - Number of wavelet coefficients for each curve (columns of D, the dwt of Y).

K* - Number of wavelet coefficients retained after wavelet compression (K if no compression).

c - Number of error parameters in S.

J – Number of wavelet levels+1, which is number of wavelet groups retained after dwt.

m - Number of random effects in model.

H - Number of levels of random effects.

p - Number of fixed effects in model.

q - Number of quantiles specified for computation.

l - Number of contrasts to compute in postprocessing.

f - Number of peffects to compute in postprocessing.

Y: N-by-T matrix, each row containing one of the observed functions on an equally-spaced grid of

length T. This is the only variable that is required. Defaults will be taken for everything else if they are

omitted.

For 2d images, each row is a column-stacked image, i.e. if the image is a matrix A with dims(N1, N2),

then each column from j = 0 to N2-1 will be copied successively into a single row of Y.

ind = 0;
for(j = 1:N2)

for(i = 1:N1)
ind = ind + 1;
vY(ind) = V(i, j);

end
end

For 3d volumes represented by a 3d array V(i, j, k) with dims(N1, N2, N3), i varies most often followed

by j, then k.
ind = 0;
for(k = 1:N3)

for(j = 1:N2)
for(i = 1:N1)

ind = ind + 1;
vY(ind) = V(i, j, k);

end
end

end

The opposite algorithm is used to reconstruct images and volumes from beta and U in the output.

model: Matlab structure indicating details of the model. The default value is taken if the field is left

out. The following elements can be specified:

Field name Type Description Default

X N-by-p

matrix

Desired covariates for the p fixed effect functions in

the model.

Nx1 column of 1’s

Z N-by-m

matrix

Contains covariates for each set of random effect

functions. If omitted, it is assumed that it is a fixed

effects model. Z can also be stored with all the levels

concatenated together columnwise.

C N-by-c

matrix

Columns indicate the functions that share a common

residual error S.

1 col of 1’s

m Vector

of length

H

If more than one level of random effects is desired,

this vector specifies the number of random effects at

each level. Sum of elements must equal m, number of

columns of Z.

Notes on model

The previous method to specify multiple levels of random effects is still supported. In this format, Z is

specified as a cell array of length H where each cell is a Z matrix containing just the covariates for that

level. When concatenated together columnwise, they are equivalent to the Z matrix defined above. If Z

is defined this way, then m vector is not used.

basis_specs: This Matlab structure, formerly called wavespecs, has been expanded to include other

transforms as well as the discrete wavelet transform. The wavespecs name is still recognized and will

be process as before, but is deprecated. The following elements can be specified (The default value is

taken if the field is left out) :

Field name Type Description Default

transformtype string Selects transform to be applied to data.

“none” – In this case no transform is performed

and the input data matrix is treated like the

coefficient matrix

“wavelet”

“wavelet” – dwt as in previous versions

“PC” – Principal Components

 “custom” – User supplies matrix transform

“PCw”- Performs PC followed by wavelet

transform on residual. PC and wavelet

coefficients are concatenated to give D.

“wPC” – Applies wavelet transform followed by

PC on wavelet coefficients

The following fields apply to the wavelet transform

wavelet string Wavelet basis to use (see below for options) “db4”

nlevels +integer Number of levels of decomposition. Optimal

number

boundary string Boundary correction method used. “periodic”

extended_mode 0-or-1 Whether (1) or not (0) to keep extra boundary

wavelet coefficients.

1

alphawav +double Fraction of “energy” retained during wavelet

compression (1 being no compression).

1.0

t 0-or-+ integer Number of functions that must be greater than

threshold P in order to be retained during

compression.

0

dims Vector of

length Ndims

Dimensions for 2d or 3d data sets. Length gives

number of dimensions.

1d

highpass 0-or-+ integer Number of most detailed levels discarded. 0

lowpass 0-or-+ integer Number of least detailed levels discarded. 0

The following fields apply to the 2d rectangular wavelet transform

rectangular 0-or-1 Selects square (0) or rectangular(1) 2D dwt

transform.

0

wavelet2 string Wavelet basis to use for dimension 2 “db4”

nlevels2 + integers Number of levels of decomposition for dim 2 Optimal

number

boundary2 string Boundary correction method used for dim 2 “periodic”

The following fields apply to the Principal Components transform

alphaPC 0 <= alphaPC

<= 1

Fraction of energy retained in PC compression

(1 being no compression).

1.0

PCpartitionbase Base for automatic partition of PC coefficients. 10.

The following fields control partitioning for Principal Components, “none”, and “custom” transform

types.

partitions Int Vector Each element contains number of wavelet

coefficients in a partition.

empty

npartitions + integer Number of equal partitions 0

Notes on basis_specs

Wavelet Bases: The current version accepts both columns of abbreviations for the wavelet bases

specified below. Here are the available wavelets, and the corresponding notations for wfmm and

Matlab:

 WFMM wavelets Matlab equivalent

 "haar", “db1” or “haar”

 "d4", “db2”

 "d6", “db3”

 "d8", “db4”

 "d10", “db5”

 "d12", “d6”

 "d14", “db7”

 "d16", “db8”

 "d18", “db9”

 "d20", “db10”

 "s4", “sym2”

 "s6", “sym3”

 "s8", “sym4”

 "s10", “sym5”

 "s12", “sym6”

 "s14", “sym7”

 "s16", “sym8”

 "c6", “coif1”

 "c12", “coif2”

 "c18", “coif3”

 "c24", “coif4”

 "c30" “coif5”

Notes on partitions:

Partitions are defined as contiguous subgroups of coefficients that are assigned a Pi and Tau

parameter for smoothing. Partitioning is taken care of automatically for wavelets. Each level has its

The following fields store matrices for “custom” transform; also store matrix transforms for “PC”

phi_inv T-by-K matrix Matrix for transform D = Y*phi_inv empty

phi K-by-T matrix Matrix for inverse transform Y = D*phi.

Software attempts to compute inverse of phi_inv

if this is left blank.

empty

The following fields are written out in wavespecs by dwt processing. They do not need to be specified

on input and should not be modified except for Kj when wavelet = "none".

Kj Vector of

length J

Number of wavelet coefficients in the

approximation and n levels of details.

T +integer Number of data points in curve

J +integer Number of entries in Kj; wavelet levels +1

K +integer Number of wavelet coefficients

Kstar +integer Number of wavelet coefficients retained after

compression

DIndex Vector of

variable length

Index of each retained wavelet coefficient in

original uncompressed array.

own Pi and Tau parameter. For other types of transforms, partitions can be specified manually by

supplying a partitions vector. Each element of the vector specifies the number of contiguous

elements in the partition from 0 to Kstar – 1 and must sum to Kstar. Software will check this and

throw an exception if there is an error.

If partitions vector is not supplied, it checks for an npartitions argument; if present, it splits the

coefficients into npartitions number of equal partitions (remainder goes to the last partition). If

npartitions is not supplied, it is assumed to be 1. For principal components, an automatic method is

used if none of the manual methods are prescribed. This algorithm examines the logbase(lambda) of

the retained eigenvalues, which are sorted in descending order and groups them into bins of 0.5. If a

bin doesn’t have more than 1 element, it is combined with the following bin (except for the last bin,

which would be combined with the previous bin. The base for the logarithm is specified by the

PCpartitionbase field and is defaulted to 10. Decreasing the base value has the effect of creating

more bins.

.

Boundary: The following strings are recognized for the boundary field:

Boundary Condition

Type

Description

 "zero" Boundaries are zero-padded
 "periodic"
 "reflection" Boundary values are reflected around the end of data.
 "interval"

MCMCspecs: Matlab structure describing details of MCMC. The default value is taken if the field is

left out. The following scalar elements can be specified:

Field name Description Default

B Number of MCMC samples to obtain. 1000

burnin Burn-in length; number of initial samples to discard. 1000

thin Thinning parameter; e.g. if 10, then keep every 10

samples in MCMC.

5

propvar_omega Multiple of var(MLE) to use in proposal variance for

variance components in step 2 of the MCMC.

1.5

nj_nosmooth Number of lowest frequency wavelet levels for which we

want a vague prior (no smoothing).

2

The following parameters are simply for numerical stability:

minp Minimum value for any ij. 10
-14

minT Minimum value for Tij. 10

bigT Value to use for Tij when vague prior desired (no

smoothing).

1000

maxO Maximum odds ratio (prevents overflow). 10
20

minVC Minimum value of variance component (prevents

instability of variance components wandering near zero).

10
-6

VC0_thresh Minimum size for important variance component. 10
-6

delta_omega Multiple for prior on omega: “number of datasets of

information” in prior (see discussion in Morris, et al.

(2003) JASA, 98:591-597).

10
-4

omega_MOM_maxiter Maximum number of iterations in finding MOM starting

values for variance components.

100

omega_MOM_convcrit Convergence criteria for iterative procedure for finding

MOM starting values for variance components.

10
-3

time_update Number of iterations between updates to the log file

during MCMC loop.

100.

missing_data Flag indicating whether to process normal data Y or

imputed data Vstar (0=normal, 1=imputed).

0.

update_pi_tau Flag indicating whether to allow MCMC updating of pi

and tau variables Vstar (0=no updating, fix with empirical

Bayes estimates, 1=do MCMC updating).

0.

pi_prior_var Prior variance for pi when updating pi and tau. 0.06

tau_prior_var Prior variance for tau when updating pi and tau. 1000

Notes on nj_nosmooth:

All transformtypes except “PCw” use a scalar value for nj_nosmooth. In this one exception, two

values for the PC coefficients and wavelet coefficients may be required. In this case, nj_nosmooth is

specified as a vector with the first element applied to the PC components and the second element

applied to the wavelet components. If only one element is specified, it is applied to the wavelet

portion and all PC coefficients are smoothed.

PostProcessSpecs: Matlab structure controlling postprocessing. The default value is taken if the field is

left out. The following scalar elements can be specified:

Field name Type Description Default

L l-by-p matrix Specifies linear combinations

of effects.

None

quantiles vector of

length q

Specifies quantiles either as

whole numbers (0 to 1) or

percent (0 to 100). Values less

than 50% also specify alpha

for Lbeta_upperCI and

Lbeta_lowerCI.

.5,1,2.5,5 and

complement

effect_size vector of

length f

Specifies effect sizes for

computation beta_peffects =

Pr(|theta|>effect_size).

0.3219, 0.585, 0.8074, 1

keep_beta_samples 0-or-1 Flag that specifies whether to

output beta samples to Input

_beta.dat. 0 = no output, 1 =

output).

1

compute_U 0-or-1 Flag that specifies whether to

compute random effects. 0 =

do not compute, 1 = compute).

0

keep_U_samples 0-or-1 Flag that specifies whether to

output U samples to Input

_U.dat. (0 = no output, 1 =

output).

0

LT T-by-g matrix

Notes on LT

LT allows users to specify an option that allows the user to request inference for linear

combinations of the t’s. This is done by simply matrix multiplying by the T x g matrix LT, e.g. for

the posteriors of p x T matrix beta, beta*LT gives a p x g matrix on which additional statistical

summaries are computed. The LT transform allows the user to specify g regions of interest, one

with each column of LT.

Output

The output of the program is a Matlab data file (“output.mat” in the sample call), containing the

following Matlab objects, as well as an input_Init.mat file containing results of the initialization phase of

the computation. Error messages and status are written to standard output, which can be redirected to a

log file. Processing status can be monitored by periodically typing the log file

The following variables are stored in the input_Init.mat file:

Variable name Type Description

model

 wavespecs

MCMCspecs

 Copies of input structures.

D N-by-K*

matrix

Wavelet coefficients for observed data.

pi_MLE p-by-J

matrix
ij estimated by the Empirical Bayes procedure described in Section

4.4 of Morris and Carroll (2006), based on theta_MLE.

pi_MOM p-by-J

matrix
ij estimated by the Empirical Bayes procedure based on

theta_MOM.

tau p-by-J

matrix

Tij estimated by the Empirical Bayes procedure described in Section

4.4 of Morris and Carroll (2006), based on theta_MLE.

tau_MOM p-by-J

matrix

 Tij estimated by the Empirical Bayes procedure, based on

theta_MOM.

omega_MOM (H+c)-by-

K*

 Method of moments starting values for the wavelet-space variance

components qjk and sjk in model (3).

omega_MLE (H+c)-by-

Kstar

 Profile maximum likelihood starting values for the wavelet-space

variance components.

se_omega (H+c)-by-

K*

Estimate of the variance of omega_MLE, to use in automatic

proposal variances in Metropolis-Hastings procedure described in

step (b) of Section 5 in Morris and Carroll (2006).

betastar_ns p-by-K*

matrix

Non-shrunken estimate of wavelet coefficients for fixed effects

conditioning on starting values of variance components, given by

equation (5) in Morris and Carroll (2006).

Vbetastar_ns p-by-K*

matrix

Variance of these wavelet-spaced estimates, given by equation (6) in

Morris and Carroll (2006).

alpha_MLE p-by-J

matrix

 Matrix containing starting values for shrinkages for wavelet

coefficients for fixed effect functions, which are their posterior

probabilities of being “nonzero”. Condition on omega_MLE for

variance components.

alpha_MOM p-by-J

matrix

 same as alpha, only based on omega_MOM.

prior_omega_a,

prior_omega_b

(H+c)-by-

K*

 matrices containing the prior hyperparameters for the inverse gamma

distributions on the wavelet-space variance components

Wv structure Structure containing, for each wavelet coefficient, the following

statistics, using starting values of the variance components for jk

 XvX=X’(jk)
-1

X

 XvZ=X’(jk)
-1

Z

 XvD=X’(jk)
-1

D

 ZvZ=Z’(jk)
-1

Z

 ZvD=Z’(jk)
-1

D

 dvd=diag(D’(jk)
-1

D)

 L1=det(jk)

 L2= (djk-X Bjk)’ (jk)
-1

 (djk-X Bjk)

 where jk is the marginal variance of djk

.

The following variables are stored in output.mat

Variable name Type Description

model

wavespecs

MCMCspecs

structures Input structures are included to store parameters used to

generate these values.

D N-by-K* matrix Wavelet coefficients for observed data.

betastar_ns p-by-K matrix Non-shrunken estimate of wavelet coefficients for fixed

effects conditioning on starting values of variance

components, given by equation (5) in Morris and Carroll

(2006).

betastar_mean p-by-K* matrix betans*alpha; shrinkage starting values for betas.

Lbetans_mean p-by-T matrix Inverse discrete wavelet transform of betastar_ns.

Unsmoothed beta.

Lbeta_mean p-by-T matrix Posterior mean for each fixed effect function.

Lbeta_quantiles q-by-p*T matrix Pointwise quantiles specified by quantiles in

PostProcessSpecs structure for each fixed effect function.

Lbeta_sd p-by-T matrix Pointwise quantiles for each fixed effect function.

Lbeta_peffects f-by-p*T matrix p effects of beta samples.

Lbeta_p0 p-by-T matrix 2*min [Prob{ Lbeta(t)>0 }, Prob{ Lbeta(t)<0 }]. In cases

with vague priors approximates the frequentist p-values.

Lbeta_simbas p-by-T matrix Simultaneous band scores for beta

Lbeta_upperCI Alpha-by-p*T

matrix

Simultaneous credible interval upper bound

Lbeta_lowerCI Alpha-by-p*T

matrix

Simultaneous credible interval lower bound

omega_mean (m+c)-by-Kstar

matrix

 Mean of MCMC omega samples.

omega_quantiles q-by-(H+c)*Kstar

matrix

Pointwise quantiles specified by quantiles in

PostProcessSpecs structure for each random effects level and

standard error c.

omega_sd (H+c)-by-Kstar

matrix

Standard deviation of MCMC omega samples.

If MCMCspecs.update_pi_tau is 1, the following outputs are available:

pi_mean p-by-J matrix Mean of the posterior samples of Pi.

pi_quantiles p-by-J matrix Quantiles of the posterior samples of Pi.

pi_sd p-by-J matrix Standard deviations of the posterior samples of Pi.

tau_mean p-by-J matrix Mean of the posterior samples of Tau.

tau_quantiles p-by-J matrix Quantiles of the posterior samples of Tau.

tau_sd Standard deviations of the posterior samples of Tau.

If PostProcessSpecs. compute_U is 1, the following outputs are available:

U_mean m-by-T matrix Posterior mean for each random effect function.

U_ns m-by-T matrix Nonsmoothed curve for each random effect function.

U_quantiles q-by-m*T matrix Pointwise quantiles specified by quantiles in

PostProcessSpecs struct for each random effect.

U_sd m-by-T matrix Standard deviation of MCMC random effect samples.

If functions are 1d and T < 1500, the following outputs are available:

rho Cell vector of

length (H+c)

Data-space correlation T-by-T matrices corresponding to

diagonal wavelet-space matrix formed from omega_mean.

sigma Cell vector of

length (H+c)

 Data-space variance functions (vector of length T)

corresponding to diagonal wavelet-space matrix formed from

omega_mean.

Notes on output file:

*quantiles:

Lbeta_quantiles is specified to be stored as a q x p*T matrix where p*T length row is stored with T

varying most often (p-by-T matrix stored "row-wise"). The same format also applies to quantiles for

U, omega, pi, and tau. beta_peffects is specified to be stored as an f-by-p*T matrix. Again each

row can be thought of as a p-by-T matrix stored row-wise.

LBetaLt_* outputs:

If PostProcessSpecs.LT is specified, the Lbeta_statistic outputs have a corresponding

LbetaLt_statistic output that gives the summaries statistics for Lbeta*LT outputs.

Lbeta_simbas, Lbeta_upperCI, Lbeta_lowerCI:

Simultaneous credible intervals are computed from max(Zscore) over the T samples of each fixed

effect sample, yielding n max_Zscores samples. The quantile of maxZscore corresponding to a

specified alpha is then combined with point-wise mean and standard deviation values to give the

simultaneous credible interval (Lbeta_upperCI and Lbeta_lowerCI for each fixed effect.

Lbeta_simbas is defined as minimum significance level alpha at which the simultaneous credible

band excludes zero.

PostProcessSpecs.keep_beta_samples must be set to 1 in order to compute these outputs since this

requires the beta samples to be read in from the *_beta.dat file.

MCMC samples are output in binary double precision format, one file for each variable with filename

Input _variablename.dat:

Filename Description

Input _wbeta.dat File containing MCMC posterior samples for wavelet coefficients for fixed

effects. Kstar samples for each fixed effect are stored together and all fixed

effect data blocks for one iteration of MCMC are stored together.

Input _beta.dat File containing MCMC posterior samples for data-space fixed effect

functions. T samples for each fixed effect are stored together and all fixed

effect data blocks for one iteration of MCMC are stored together.

Input _omega.dat File containing MCMC posterior samples for variance components in

wavelet space. Kstar samples for each error parameter or random effects

level are stored together and all error parameter or random effects level data

blocks for one iteration of MCMC are stored together.

Input _newtheta.dat File containing Metropolis-Hastings acceptance probabilities for the set of

variance components for each wavelet coefficient. Kstar samples for each

error parameter or random effects level are stored together and all error

parameter or random effects level data blocks for one iteration of MCMC

are stored together.

Input_U.dat File containing MCMC posterior samples for random effects. T samples for

each random effect are stored together and all random effect data blocks for

one iteration of MCMC are stored together.

 Comments:

 The current interface assumes you create the input files and want to post-process the output

files in Matlab.

 The current version of the code assumes:

1. By default you want to estimate the shrinkage hyperparameters using the empirical

Bayes method. These can be estimated as part of the MCMC by setting

MCMCspecs.update_pi_tau to 1.

2. You want vague proper priors for the variance components, centered at the starting

values with information equivalent to delta_omega observations.

3. The random effect functions are independent and identically distributed, so P=R=I

 This code yields MCMC samples for the quantities in the wavelet-space model, (3) in Morris

and Carroll (2006), plus MCMC samples for the fixed effect functions B in the data space

model (2).

 MCMC samples of Qh and Si matrices can be obtained by applying the 2-D IDWT to the

corresponding diagonal wavelet-space matrices. They are generated only for T < 1000, since

their large size will cause memory issues in large data sets.

 For large data sets, we recommend using the 64-bit executable. Approximate RAM and disk

usage are given by the formulas below.

Estimating Disk and RAM Usage

N = Number of Functions

p = Number of fixed effect functions

T = Number of observations/function

B = Number of MCMC samples

K = Number of wavelet coefficients

K’ = Number of non-thresholded wavelet coefficients

m = Number of random effect functions H = Number of levels of random effect functions

c = Number of strata for residual error functions

Disk Usage 8 [BK’(p+H+c+1) + pT(B+4) + 3NT+ 2NK’ + K’(p
2
+m

2
+pm+m+3+7p+7(H+c))]

RAM Usage 8[2pT+(H+c+p+2)K’+T + (0.05B+4)pT +6T+ (4(H+c)+2p)K’]

Parallel Processing

The processing has also been divided into three executables for initialization (wfmm1), MCMC loop

(wfmm2), and postprocessing (wfmm3). This allows multiple MCMC chains to be run simultaneously

using a grid computing resource like Condor, and have their results combined in the postprocessing step.

Their command line arguments are:

wfmm1 input.mat > log_file.log

This takes the same input.mat as input and outputs a input_Init.mat file as described above.

wfmm2 input_Init.mat output

Takes the input_Init.mat file as input and outputs MCMC samples as output_variablename.dat binary

files

wfmm3 input_Init.mat output output_summary.mat number_of_files

The following is an example of a parallel processing bat file for Condor using these three executables. It

relies only on a command to submit jobs to the grid (condor_submit), and a command to wait until all of

the submitted jobs have run (condor_wait):

wfmm1 %1.mat > %1_init.log

condor_submit -a Dataset=%1 -a ThreadNumber=%2 wfmm_condor.sub

condor_wait %1.log

wfmm3 %1_Init.mat %1_results %1_summary.mat %2 > %1_summary.log

%1 (first argument of the bat file) is filename of the input mat file, %2 (second argument of the bat file)

is number of parallel jobs requested for the MCMC computation.

The condor_submit command also requires a submit file that describes the jobs. The filename and

number of jobs parameters are passed to the condor submit file as parameters Dataset and

ThreadNumber. An example file is shown below.

A basic submit file

On Windows the universe is vanilla

universe = vanilla

Set the executable name here

executable = WFMM2.exe

Set command line arguments here

arguments = $(Dataset)_Init.mat $(Dataset)_results_$(Process).mat

Set requirements here (memory, OS, etc.)

requirements = (OpSys == "WINNT40" || OpSys == "WINNT50" || OpSys == "WINNT51")

 && (memory > 1000)

List the input files here

transfer_input_files = $(Dataset)_Init.mat, Z:\bin\icudt24l.dll,

 Z:\bin\icuin24.dll, Z:\bin\icuio24.dll, Z:\bin\icuuc24.dll,

 Z:\bin\libmat.dll, Z:\bin\libmx.dll, Z:\bin\libut.dll, Z:\bin\libz.dll,

 Z:\bin\msvcp71.dll, Z:\bin\msvcr71.dll, Z:\bin\libguide40.dll

Leave this alone

transfer_files = ALWAYS

You can rename these files, but be sure they're defined

These may be useful for debugging purposes

output = $(Dataset)_$(Process).txt

error = $(Dataset).err

log = $(Dataset).log

Set the number of copies to submit here

queue $(ThreadNumber)

These files should be adaptable to any grid computing system.

References

Morris, JS and Carroll, RJ (2006, Wavelet-based functional mixed models, Journal of the Royal

Statistical Society, Series B, 68(2): 179-199.

http://www.mdanderson.org/pdf/biostats_utmdabtr00604.pdf

Morris JS, Arroyo C, Coull B, Ryan LM, Herrick R, and Gortmaker SL (2006), Using Wavelet-Based

Functional Mixed Models to characterize Population Heterogeneity in Accelerometer Profiles: A Case

Study. Journal of the American Statistical Association, 101(476): 1352-1364.

Morris, JS, Brown PJ, Herrick, RC, Baggerly KA, and Coombes, KR (2008), Bayesian Analysis of Mass

Spectrometry Proteomic Data using Wavelet Based Functional Mixed Models, Biometrics, 64(2): 479-

489.

Morris , JS, Baladandayuthapani, V, Herrick, RC, Sanna, P, and Gutstein, H (2011, Automated Analysis

of Quantitative Image Data Using Isomorphic Functional Mixed Models, with Applications to

Proteomics Data, The Annals of Applied Statistics, 5(2A), 894-923.

http://odin.mdacc.tmc.edu/~jmorris/papers_files/TriTrac2.pdf
http://odin.mdacc.tmc.edu/~jmorris/papers_files/TriTrac2.pdf
http://odin.mdacc.tmc.edu/~jmorris/papers_files/TriTrac2.pdf
file://mymdafiles/usersdqs1/rcherrick/wfmm/Work/Work/ProductSupportFiles/WFMM/wfmm_MS_revision_2.pdf
file://mymdafiles/usersdqs1/rcherrick/wfmm/Work/Work/ProductSupportFiles/WFMM/wfmm_MS_revision_2.pdf

