Wfmm User's Guide

This user guide documents the basics of how to use the code provided for implementing the Bayesian wavelet-based functional mixed models methodology introduced in Morris and Carroll (2006). The code implements the Markov Chain Monte Carlo (MCMC) procedure described in Section 5 of the paper and outputs posterior samples for many model quantities.

Sample program call (from DOS window):

wfmm *input*.mat *output*.mat > *log_file.log*

The wfmm executable takes two arguments: an input filename or full filepath (represented above by *input*.mat)and and output filename (*output*.mat). Log information is written to standard out, which can be redirected to a log file.

Input

The input file (*"input*.mat" in the call) is in Matlab file format and can specify the raw data matrix **Y** and structures **model**, **basis_specs**, **MCMCspecs**, and **PostProcessSpecs** that specify the model and parameters controlling the processing.

Array dimensions of input and output variables are determined by the following parameters:

- *N* Number of data curves (rows in Y).
- *T* Number of samples of each data curve (columns of Y).
- *K* Number of wavelet coefficients for each curve (columns of D, the dwt of Y).
- K^* Number of wavelet coefficients retained after wavelet compression (K if no compression).
- c Number of error parameters in S.
- J Number of wavelet levels+1, which is number of wavelet groups retained after dwt.
- m Number of random effects in model.
- *H* Number of levels of random effects.
- *p* Number of fixed effects in model.
- q Number of quantiles specified for computation.
- l Number of contrasts to compute in postprocessing.
- f Number of peffects to compute in postprocessing.

Y: N-by-T matrix, each row containing one of the observed functions on an equally-spaced grid of length T. This is the only variable that is required. Defaults will be taken for everything else if they are omitted.

For 2d images, each row is a column-stacked image, i.e. if the image is a matrix A with dims(N1, N2), then each column from j = 0 to N2-1 will be copied successively into a single row of Y.

```
ind = 0;
for(j = 1:N2)
    for(i = 1:N1)
        ind = ind + 1;
        vY(ind) = V(i, j);
```

end end

For 3d volumes represented by a 3d array V(i, j, k) with dims(N1, N2, N3), i varies most often followed by j, then k.

The opposite algorithm is used to reconstruct images and volumes from beta and U in the output.

model: Matlab structure indicating details of the model. The default value is taken if the field is left out. The following elements can be specified:

Field name	Туре	Description	Default
Х	N-by-p	Desired covariates for the p fixed effect functions in	Nx1 column of 1's
	matrix	the model.	
Ζ	N-by-m	Contains covariates for each set of random effect	
	matrix	functions. If omitted, it is assumed that it is a fixed	
		effects model. Z can also be stored with all the levels	
		concatenated together columnwise.	
С	N-by-c	Columns indicate the functions that share a common	1 col of 1's
	matrix	residual error S.	
m	Vector	If more than one level of random effects is desired,	
	of length	this vector specifies the number of random effects at	
	Н	each level. Sum of elements must equal m, number of	
		columns of Z.	

Notes on model

The previous method to specify multiple levels of random effects is still supported. In this format, Z is specified as a cell array of length H where each cell is a Z matrix containing just the covariates for that level. When concatenated together columnwise, they are equivalent to the Z matrix defined above. If Z is defined this way, then m vector is not used.

basis_specs: This Matlab structure, formerly called wavespecs, has been expanded to include other transforms as well as the discrete wavelet transform. The wavespecs name is still recognized and will be process as before, but is deprecated. The following elements can be specified (The default value is taken if the field is left out) :

Field name	Туре	Description	Default
transformtype	string	Selects transform to be applied to data.	"wavelet"
		"none" – In this case no transform is performed	
		and the input data matrix is treated like the	
		coefficient matrix	

"wavelet" – dwt as in previous versions	
"PC" – Principal Components	
"custom" – User supplies matrix transform	
"PCw"- Performs PC followed by wavelet	
transform on residual. PC and wavelet	
coefficients are concatenated to give D.	
"wPC" – Applies wavelet transform followed by	
PC on wavelet coefficients	

	The following	ng fields apply to the wavelet transform	
wavelet	string	Wavelet basis to use (see below for options) "db4"	
nlevels	+integer	Number of levels of decomposition.	Optimal
	_		number
boundary	string	Boundary correction method used.	"periodic"
extended_mode	0-or-1	Whether (1) or not (0) to keep extra boundary	1
		wavelet coefficients.	
alphawav	+double	Fraction of "energy" retained during wavelet	1.0
•		compression (1 being no compression).	
t	0-or-+ integer	Number of functions that must be greater than	0
		threshold P in order to be retained during	
		compression.	
dims	Vector of	Dimensions for 2d or 3d data sets. Length gives	1d
	length Ndims	number of dimensions.	
highpass	0-or-+ integer	Number of most detailed levels discarded.	0
lowpass	0-or-+ integer	Number of least detailed levels discarded. 0	
_	·		
r	The following field	s apply to the 2d rectangular wavelet transform	
rectangular 0-or-1 Selects squ		Selects square (0) or rectangular(1) 2D dwt	0
		transform.	
wavelet2	string	Wavelet basis to use for dimension 2 "db4"	
nlevels2	+ integers	Number of levels of decomposition for dim 2	Optimal
			number
boundary2 string Boundary correction method used		Boundary correction method used for dim 2	"periodic"
			-
, ,	The following field	s apply to the Principal Components transform	
alphaPC	$0 \ll alphaPC$	Fraction of energy retained in PC compression	1.0
	<= 1	(1 being no compression).	
PCpartitionbase		Base for automatic partition of PC coefficients.	10.
The following fiel	ds control partition	ing for Principal Components, "none", and "custor	n" transform
		types.	
partitions	Int Vector	Each element contains number of wavelet	empty
		coefficients in a partition.	
npartitions	+ integer	Number of equal partitions	0

The following fields store matrices for "custom" transform; also store matrix transforms for "PC"				
phi_inv	<i>T-by-K</i> matrix	Matrix for transform D = Y*phi_inv empty		
phi	<i>K-by-T</i> matrix	<i>L-by-T</i> matrix Matrix for inverse transform $Y = D^*$ phi. empty		
		Software attempts to compute inverse of phi_inv		
		if this is left blank.		
The following fields	are written out in	wavespecs by dwt processing. They do not need to	be specified	
on inp	ut and should not	be modified except for Kj when wavelet = "none".		
Кј	Vector of	Number of wavelet coefficients in the		
	length J	approximation and n levels of details.		
Т	+integer	Number of data points in curve		
J	+integer	Number of entries in Kj; wavelet levels +1		
K	+integer	Number of wavelet coefficients		
Kstar	+integer	Number of wavelet coefficients retained after		
		compression		
DIndex	Vector of	Index of each retained wavelet coefficient in		
	variable length	original uncompressed array.		

Notes on basis_specs

Wavelet Bases: The current version accepts both columns of abbreviations for the wavelet bases specified below. Here are the available wavelets, and the corresponding notations for wfmm and Matlab:

WFMM wavelets	Matlab equivalent
"haar",	"db1" or "haar"
"d4",	"db2"
"d6",	"db3"
"d8",	"db4"
"d10",	"db5″
"d12",	"d6″
"d14",	"db7"
"d16",	"db8″
"d18",	"db9"
"d20",	"db10"
"s4",	"sym2"
"s6",	"sym3"
"s8",	"sym4"
"s10",	"sym5"
"s12",	"sym6"
"s14",	"sym7"
"s16",	"sym8"
"c6",	"coif1"
"c12",	"coif2"
"c18",	"coif3"
"c24",	"coif4"
"c30"	"coif5"

Notes on **partitions**:

Partitions are defined as contiguous subgroups of coefficients that are assigned a Pi and Tau parameter for smoothing. Partitioning is taken care of automatically for wavelets. Each level has its

own Pi and Tau parameter. For other types of transforms, partitions can be specified manually by supplying a partitions vector. Each element of the vector specifies the number of contiguous elements in the partition from 0 to Kstar -1 and must sum to Kstar. Software will check this and throw an exception if there is an error.

If partitions vector is not supplied, it checks for an npartitions argument; if present, it splits the coefficients into npartitions number of equal partitions (remainder goes to the last partition). If npartitions is not supplied, it is assumed to be 1. For principal components, an automatic method is used if none of the manual methods are prescribed. This algorithm examines the logbase(lambda) of the retained eigenvalues, which are sorted in descending order and groups them into bins of 0.5. If a bin doesn't have more than 1 element, it is combined with the following bin (except for the last bin, which would be combined with the previous bin. The base for the logarithm is specified by the PCpartitionbase field and is defaulted to 10. Decreasing the base value has the effect of creating more bins.

Boundary Condition	Description
Туре	
"zero"	Boundaries are zero-padded
"periodic"	
"reflection"	Boundary values are reflected around the end of data.
"interval"	

Boundary: The following strings are recognized for the boundary field:

MCMCspecs: Matlab structure describing details of MCMC. The default value is taken if the field is left out. The following scalar elements can be specified:

Field name	Description	Default
В	Number of MCMC samples to obtain.	1000
burnin	Burn-in length; number of initial samples to discard.	1000
thin	Thinning parameter; e.g. if 10, then keep every 10 samples in MCMC	5
propvar_omega	Multiple of var(MLE) to use in proposal variance for variance components in step 2 of the MCMC	1.5
nj_nosmooth	Number of lowest frequency wavelet levels for which we want a vague prior (no smoothing).	2
The following parameters are	simply for numerical stability:	1
minp	Minimum value for any π_{ij} .	10-14
minT	Minimum value for T _{ij} .	10
bigT	Value to use for T_{ij} when vague prior desired (no smoothing).	1000
maxO	Maximum odds ratio (prevents overflow).	10^{20}
minVC	Minimum value of variance component (prevents instability of variance components wandering near zero).	10 ⁻⁶
VC0_thresh	Minimum size for important variance component.	10-6

delta_omega	Multiple for prior on omega: "number of datasets of	10 ⁻⁴
	information" in prior (see discussion in Morris, et al.	
	(2003) JASA, 98:591-597).	
omega_MOM_maxiter	Maximum number of iterations in finding MOM starting	100
	values for variance components.	
omega_MOM_convcrit	Convergence criteria for iterative procedure for finding	10 ⁻³
	MOM starting values for variance components.	
time_update	Number of iterations between updates to the log file	100.
	during MCMC loop.	
missing_data	Flag indicating whether to process normal data Y or	0.
	imputed data Vstar (0=normal, 1=imputed).	
update_pi_tau	Flag indicating whether to allow MCMC updating of pi	0.
	and tau variables Vstar (0=no updating, fix with empirical	
	Bayes estimates, 1=do MCMC updating).	
pi_prior_var	Prior variance for pi when updating pi and tau.	0.06
tau_prior_var	Prior variance for tau when updating pi and tau.	1000

Notes on **nj_nosmooth:**

All transformtypes except "PCw" use a scalar value for nj_nosmooth. In this one exception, two values for the PC coefficients and wavelet coefficients may be required. In this case, nj_nosmooth is specified as a vector with the first element applied to the PC components and the second element applied to the wavelet components. If only one element is specified, it is applied to the wavelet portion and all PC coefficients are smoothed.

PostProcessSpecs: Matlab structure controlling postprocessing. The default value is taken if the field is left out. The following scalar elements can be specified:

Field name	Туре	Description	Default
L	<i>l-by-p</i> matrix	Specifies linear combinations	None
		of effects.	
quantiles	vector of	Specifies quantiles either as	.5,1,2.5,5 and
	length q	whole numbers (0 to 1) or	complement
		percent (0 to 100). Values less	
		than 50% also specify alpha	
		for Lbeta_upperCI and	
		Lbeta_lowerCI.	
effect_size	vector of	Specifies effect sizes for	0.3219, 0.585, 0.8074, 1
	length f	computation beta_peffects =	
		Pr(theta >effect_size).	
keep_beta_samples	0-or-1	Flag that specifies whether to	1
		output beta samples to <i>Input</i>	
		_beta.dat. $0 = no$ output, $1 =$	
		output).	
compute_U	0-or-1	Flag that specifies whether to	0
		compute random effects. $0 =$	
		do not compute, $1 = $ compute).	

keep_U_samples	0-or-1	Flag that specifies whether to	0
		output U samples to <i>Input</i>	
		$_$ U.dat. (0 = no output, 1 =	
		output).	
LT	<i>T-by-g</i> matrix		

Notes on LT

LT allows users to specify an option that allows the user to request inference for linear combinations of the t's. This is done by simply matrix multiplying by the T x g matrix LT, e.g. for the posteriors of p x T matrix beta, beta*LT gives a p x g matrix on which additional statistical summaries are computed. The LT transform allows the user to specify g regions of interest, one with each column of LT.

Output

The output of the program is a Matlab data file ("*output*.mat" in the sample call), containing the following Matlab objects, as well as an *input*_Init.mat file containing results of the initialization phase of the computation. Error messages and status are written to standard output, which can be redirected to a log file. Processing status can be monitored by periodically typing the log file

Variable name	Туре	Description
model		Copies of input structures.
wavespecs		
MCMCspecs		
D	N-by-K*	Wavelet coefficients for observed data.
	matrix	
pi_MLE	p-by-J	π_{ii} estimated by the Empirical Bayes procedure described in Section
	matrix	4.4 of Morris and Carroll (2006), based on theta_MLE.
pi_MOM	p-by-J	π_{ii} estimated by the Empirical Bayes procedure based on
	matrix	theta_MOM.
tau	p-by-J	T_{ij} estimated by the Empirical Bayes procedure described in Section
	matrix	4.4 of Morris and Carroll (2006), based on theta_MLE.
tau_MOM	p-by-J	T_{ij} estimated by the Empirical Bayes procedure, based on
	matrix	theta_MOM.
omega_MOM	(H+c)-by-	Method of moments starting values for the wavelet-space variance
	<i>K</i> *	components q_{jk} and s_{jk} in model (3).
omega_MLE	(H+c)-by-	Profile maximum likelihood starting values for the wavelet-space
	Kstar	variance components.
se_omega	(H+c)-by-	Estimate of the variance of omega_MLE, to use in automatic
	<i>K</i> *	proposal variances in Metropolis-Hastings procedure described in
		step (b) of Section 5 in Morris and Carroll (2006).
betastar_ns	$p-by-K^*$	Non-shrunken estimate of wavelet coefficients for fixed effects
	matrix	conditioning on starting values of variance components, given by

The following variables are stored in the *input*_Init.mat file:

		equation (5) in Morris and Carroll (2006).
Vbetastar_ns	p-by-K*	Variance of these wavelet-spaced estimates, given by equation (6) in
	matrix	Morris and Carroll (2006).
alpha_MLE	p-by-J	Matrix containing starting values for shrinkages for wavelet
_	matrix	coefficients for fixed effect functions, which are their posterior
		probabilities of being "nonzero". Condition on omega_MLE for
		variance components.
alpha_MOM	p-by-J	same as alpha, only based on omega_MOM.
	matrix	
prior_omega_a,	(H+c)-by-	matrices containing the prior hyperparameters for the inverse gamma
prior_omega_b	<i>K</i> *	distributions on the wavelet-space variance components
Wv	structure	Structure containing, for each wavelet coefficient, the following
		statistics, using starting values of the variance components for Σ_{jk}
		• $XvX=X'(\Sigma_{jk})^{-1}X$
		• $XvZ=X'(\Sigma_{ik})^{-1}Z$
		• $XvD=X'(\Sigma_{ik})^{-1}D$
		• $Z_V Z = Z' (\Sigma_{ik})^{-1} Z$
		• $ZvD=Z'(\Sigma_{ik})^{-1}D$
		• $dvd=diag(D'(\Sigma_{ik})^{-1}D)$
		• $L1=det(\Sigma_{ik})$
		• L2= $(d_{ik}-X B_{ik})^{\prime} (\Sigma_{ik})^{-1} (d_{ik}-X B_{ik})$
		where Σ_{ik} is the marginal variance of d_{ik}

The following variables are stored in *output*.mat

Variable name	Туре	Description
model	structures	Input structures are included to store parameters used to
wavespecs		generate these values.
MCMCspecs		
D	<i>N-by-K</i> * matrix	Wavelet coefficients for observed data.
betastar_ns	<i>p-by-K</i> matrix	Non-shrunken estimate of wavelet coefficients for fixed
		effects conditioning on starting values of variance
		components, given by equation (5) in Morris and Carroll
		(2006).
betastar_mean	<i>p-by-K</i> * matrix	betans*alpha; shrinkage starting values for betas.
Lbetans_mean	<i>p-by-T</i> matrix	Inverse discrete wavelet transform of betastar_ns.
		Unsmoothed beta.
Lbeta_mean	<i>p-by-T</i> matrix	Posterior mean for each fixed effect function.
Lbeta_quantiles	<i>q-by-p*T</i> matrix	Pointwise quantiles specified by quantiles in
		PostProcessSpecs structure for each fixed effect function.
Lbeta_sd	<i>p-by-T</i> matrix	Pointwise quantiles for each fixed effect function.
Lbeta_peffects	<i>f-by-p*T</i> matrix	p effects of beta samples.
Lbeta_p0	<i>p-by-T</i> matrix	$2*\min[\text{Prob}\{\text{Lbeta}(t)>0\}, \text{Prob}\{\text{Lbeta}(t)<0\}]$. In cases
_		with vague priors approximates the frequentist p-values.

Lbeta_upperCIAlpha-by-p*T matrixSimultaneous credible interval upper boundLbeta_lowerCIAlpha-by-p*TSimultaneous credible interval lower bound					
matrix matrix Lbeta_lowerCI Alpha-by-p*T Simultaneous credible interval lower bound					
Lbeta_lowerCIAlpha-by-p*TSimultaneous credible interval lower bound					
matrix					
omega_mean $(m+c)$ -by-Kstar Mean of MCMC omega samples.					
matrix					
omega_quantiles q -by- $(H+c)$ *Kstar Pointwise quantiles specified by quantiles in					
matrix PostProcessSpecs structure for each random effects level as	nd				
standard error c.					
omega_sd $(H+c)$ -by-Kstar Standard deviation of MCMC omega samples.					
matrix					
If MCMCspecs.update_pi_tau is 1, the following outputs are available:					
pi_mean <i>p-by-J</i> matrix Mean of the posterior samples of Pi.					
pi_quantiles <i>p-by-J</i> matrix Quantiles of the posterior samples of Pi.					
pi_sd <i>p-by-J</i> matrix S tandard deviations of the posterior samples of Pi.					
tau_mean <i>p-by-J</i> matrix Mean of the posterior samples of Tau.					
tau_quantiles <i>p-by-J</i> matrix Quantiles of the posterior samples of Tau.					
tau_sd Standard deviations of the posterior samples of Tau.					
If PostProcessSpecs. compute_U is 1, the following outputs are available:					
U_mean <i>m-by-T</i> matrix Posterior mean for each random effect function.					
U_ns <i>m-by-T</i> matrix Nonsmoothed curve for each random effect function.					
U_quantiles q -by-m*T matrix P ointwise quantiles specified by quantiles in					
PostProcessSpecs struct for each random effect.					
U_sd <i>m-by-T</i> matrix Standard deviation of MCMC random effect samples.					
If functions are 1d and T < 1500, the following outputs are available:					
rho Cell vector of Data-space correlation <i>T-by-T</i> matrices corresponding to					
length $(H+c)$ diagonal wavelet-space matrix formed from omega_mean.					
sigma Cell vector of Data-space variance functions (vector of length T)					
length $(H+c)$ corresponding to diagonal wavelet-space matrix formed from	m				
omega_mean.					

Notes on output file: *quantiles:

Lbeta_quantiles is specified to be stored as a q x p*T matrix where p*T length row is stored with T varying most often (p-by-T matrix stored "row-wise"). The same format also applies to quantiles for U, omega, pi, and tau. beta_peffects is specified to be stored as an f-by-p*T matrix. Again each row can be thought of as a p-by-T matrix stored row-wise.

LBetaLt_* outputs:

If PostProcessSpecs.LT is specified, the Lbeta_*statistic* outputs have a corresponding LbetaLt_*statistic* output that gives the summaries statistics for Lbeta*LT outputs.

Lbeta_simbas, Lbeta_upperCI, Lbeta_lowerCI:

Simultaneous credible intervals are computed from max(Zscore) over the T samples of each fixed effect sample, yielding n max_Zscores samples. The quantile of maxZscore corresponding to a specified alpha is then combined with point-wise mean and standard deviation values to give the simultaneous credible interval (Lbeta_upperCI and Lbeta_lowerCI for each fixed effect. Lbeta_simbas is defined as minimum significance level alpha at which the simultaneous credible

band excludes zero.

PostProcessSpecs.keep_beta_samples must be set to 1 in order to compute these outputs since this requires the beta samples to be read in from the *_beta.dat file.

MCMC samples are output in binary double precision format, one file for each variable with filename *Input _variablename*.dat:

Filename	Description
Input _wbeta.dat	File containing MCMC posterior samples for wavelet coefficients for fixed
	effects. <i>Kstar</i> samples for each fixed effect are stored together and all fixed
	effect data blocks for one iteration of MCMC are stored together.
Input _beta.dat	File containing MCMC posterior samples for data-space fixed effect
	functions. <i>T</i> samples for each fixed effect are stored together and all fixed
	effect data blocks for one iteration of MCMC are stored together.
Input _omega.dat	File containing MCMC posterior samples for variance components in
	wavelet space. <i>Kstar</i> samples for each error parameter or random effects
	level are stored together and all error parameter or random effects level data
	blocks for one iteration of MCMC are stored together.
Input _newtheta.dat	File containing Metropolis-Hastings acceptance probabilities for the set of
	variance components for each wavelet coefficient. Kstar samples for each
	error parameter or random effects level are stored together and all error
	parameter or random effects level data blocks for one iteration of MCMC
	are stored together.
Input_U.dat	File containing MCMC posterior samples for random effects. <i>T</i> samples for
	each random effect are stored together and all random effect data blocks for
	one iteration of MCMC are stored together.

Comments:

- The current interface assumes you create the input files and want to post-process the output files in Matlab.
- The current version of the code assumes:
 - 1. By default you want to estimate the shrinkage hyperparameters using the empirical Bayes method. These can be estimated as part of the MCMC by setting MCMCspecs.update_pi_tau to 1.
 - 2. You want vague proper priors for the variance components, centered at the starting values with information equivalent to delta_omega observations.
 - 3. The random effect functions are independent and identically distributed, so P=R=I

- This code yields MCMC samples for the quantities in the wavelet-space model, (3) in Morris and Carroll (2006), plus MCMC samples for the fixed effect functions B in the data space model (2).
- MCMC samples of Q_h and S_i matrices can be obtained by applying the 2-D IDWT to the corresponding diagonal wavelet-space matrices. They are generated only for T < 1000, since their large size will cause memory issues in large data sets.
- For large data sets, we recommend using the 64-bit executable. Approximate RAM and disk usage are given by the formulas below.

Estimating Disk and RAM Usage

- N = Number of Functions
- p = Number of fixed effect functions
- T = Number of observations/function
- B = Number of MCMC samples
- K = Number of wavelet coefficients
- K' = Number of non-thresholded wavelet coefficients

m = Number of random effect functions H = Number of levels of random effect functions

c = Number of strata for residual error functions

```
Disk Usage \approx 8 [BK'(p+H+c+1) + pT(B+4) + 3NT + 2NK' + K'(p^2+m^2+pm+m+3+7p+7(H+c))]
```

RAM Usage $\approx 8[2pT+(H+c+p+2)K'+T + (0.05B+4)pT + 6T + (4(H+c)+2p)K']$

Parallel Processing

The processing has also been divided into three executables for initialization (wfmm1), MCMC loop (wfmm2), and postprocessing (wfmm3). This allows multiple MCMC chains to be run simultaneously using a grid computing resource like Condor, and have their results combined in the postprocessing step. Their command line arguments are:

wfmm1 *input*.mat > *log_file.log*

This takes the same *input*.mat as input and outputs a *input_*Init.mat file as described above.

wfmm2 input_Init.mat output

Takes the *input_*Init.mat file as input and outputs MCMC samples as *output_variablename.*dat binary files

wfmm3 input_Init.mat output output_summary.mat number_of_files

The following is an example of a parallel processing bat file for Condor using these three executables. It relies only on a command to submit jobs to the grid (condor_submit), and a command to wait until all of the submitted jobs have run (condor_wait):

```
wfmm1 %1.mat > %1_init.log
condor_submit -a Dataset=%1 -a ThreadNumber=%2 wfmm_condor.sub
condor_wait %1.log
wfmm3 %1 Init.mat %1 results %1 summary.mat %2 > %1 summary.log
```

%1 (first argument of the bat file) is filename of the input mat file, %2 (second argument of the bat file) is number of parallel jobs requested for the MCMC computation.

The condor_submit command also requires a submit file that describes the jobs. The filename and number of jobs parameters are passed to the condor submit file as parameters Dataset and ThreadNumber. An example file is shown below.

```
# A basic submit file
# On Windows the universe is vanilla
universe = vanilla
# Set the executable name here
executable = WFMM2.exe
# Set command line arguments here
arguments = $(Dataset) Init.mat $(Dataset) results $(Process).mat
# Set requirements here (memory, OS, etc.)
requirements = (OpSys == "WINNT40" || OpSys == "WINNT50" || OpSys == "WINNT51")
  && (memory > 1000)
# List the input files here
transfer input files = $(Dataset) Init.mat, Z:\bin\icudt241.dll,
   Z:\bin\icuin24.dll, Z:\bin\icuio24.dll, Z:\bin\icuuc24.dll,
  Z:\bin\libmat.dll, Z:\bin\libmx.dll, Z:\bin\libut.dll, Z:\bin\libz.dll,
  Z:\bin\msvcp71.dll, Z:\bin\msvcr71.dll, Z:\bin\libguide40.dll
# Leave this alone
transfer files = ALWAYS
# You can rename these files, but be sure they're defined
# These may be useful for debugging purposes
output = $(Dataset) $(Process).txt
error = $(Dataset).err
log = $(Dataset).log
# Set the number of copies to submit here
gueue $(ThreadNumber)
```

These files should be adaptable to any grid computing system.

References

Morris, JS and Carroll, RJ (2006, Wavelet-based functional mixed models, *Journal of the Royal Statistical Society, Series B*, 68(2): 179-199.

Morris JS, Arroyo C, Coull B, Ryan LM, Herrick R, and Gortmaker SL (2006), Using Wavelet-Based Functional Mixed Models to characterize Population Heterogeneity in Accelerometer Profiles: A Case Study. *Journal of the American Statistical Association*, 101(476): 1352-1364.

Morris, JS, Brown PJ, Herrick, RC, Baggerly KA, and Coombes, KR (2008), Bayesian Analysis of Mass Spectrometry Proteomic Data using Wavelet Based Functional Mixed Models, *Biometrics*, 64(2): 479-489.

Morris , JS, Baladandayuthapani, V, Herrick, RC, Sanna, P, and Gutstein, H (2011, Automated Analysis of Quantitative Image Data Using Isomorphic Functional Mixed Models, with Applications to Proteomics Data, *The Annals of Applied Statistics*, 5(2A), 894-923.