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Summary. In this article, we apply the recently developed Bayesian wavelet-based functional mixed model
methodology to analyze MALDI-TOF mass spectrometry proteomic data. By modeling mass spectra as
functions, this approach avoids reliance on peak detection methods. The flexibility of this framework in
modeling nonparametric fixed and random effect functions enables it to model the effects of multiple factors
simultaneously, allowing one to perform inference on multiple factors of interest using the same model fit,
while adjusting for clinical or experimental covariates that may affect both the intensities and locations
of peaks in the spectra. For example, this provides a straightforward way to account for systematic block
and batch effects that characterize these data. From the model output, we identify spectral regions that
are differentially expressed across experimental conditions, in a way that takes both statistical and clinical
significance into account and controls the Bayesian false discovery rate to a prespecified level. We apply this
method to two cancer studies.
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1. Introduction
Proteomic methods simultaneously detect and measure the
expression of hundreds or thousands of proteins present
in a biological sample, and are gaining increased attention
in biomedical research. One popular proteomic method is
matrix-assisted laser desorption and ionization, time-of-flight
mass spectrometry (MALDI-TOF).

In a MALDI-TOF experiment, a biological sample of inter-
est is first mixed with an energy-absorbing matrix substance,
and the mixture is placed on a steel plate. A commonly used
variant of MALDI-TOF, called surface-enhanced laser des-
orption and ionization (SELDI-TOF), incorporates additional
chemistry on the surface of the metal plate to bind specific
classes of proteins. The plate is then placed into a vacuum
chamber, where a laser strikes the plate, desorbing ionized
peptides from the sample. An electric field accelerates the
particles into a potential free flight tube through which they
travel at a constant velocity until striking a detector plate.

The detector plate records the abundance of particles strik-
ing it over a series of short, fixed intervals of time indexed by
t = (t1, . . . , tT ), yielding the proteomic spectrum y(t). Using
basic physics principles, a quadratic transformation can be
used to map the time axis t to a set of corresponding mass-
to-charge ratios (m/z) x. Each spectrum is characterized by
numerous peaks, which correspond to proteins or protein frag-
ments (polypeptides) present in the sample. Depending on the
proteomic makeup of the sample, some peptides present may

fail to manifest as peaks if they are located on the shoulder of
a more abundant peak (see Supplementary Figure 1 for an il-
lustration of this phenomenon). Because most ions have equal
charges (+1), the value of spectrum y(x) at a peak is a rough
measure of the abundance of some molecule in the sample hav-
ing a molecular mass of x Daltons. The first column of Figure
1 contains two raw spectra from a MALDI-TOF instrument.
In this article, we consider two example data sets from cancer
studies conducted at The University of Texas M.D. Anderson
Cancer Center.

Pancreatic cancer experiment: In this study, blood serum
was taken from 139 pancreatic cancer patients and 117
healthy controls. The blood serum was fractionated using 25%
acetonitrile elutions optimized using myoglobin, then run on
a MALDI-TOF instrument to obtain a proteomic spectrum
for each sample. For this analysis, we consider the region of
the spectra between x = 4,000 and 40,000 Daltons, contain-
ing 12,096 observations per spectrum. These 256 samples were
run in four different batches over a period of several months.
More specifics of the experiment can be found in Koomen
et al. (2005). Our primary goal is to identify regions of the
spectra that are differentially expressed between pancreatic
cancer patients and healthy controls, regions corresponding
to proteins that may serve as blood serum biomarkers of pan-
creatic cancer.

Some recent case studies (Baggerly et al., 2003; Sorace and
Zhan, 2003; Baggerly, Morris, and Coombes, 2004; Conrads

C© 2008, The International Biometric Society 479



480 Biometrics, June 2008

Figure 1. Sample spectra. The first column contains raw MALDI-TOF spectra from normal and pancreatic cancer patients,
respectively, from the example data set. The second column shows the same spectra after preprocessing by baseline correction,
normalization, and denoising. The final column contains normal and pancreatic cancer spectra randomly drawn from the
posterior predictive distribution based on fitting the wavelet-based functional mixed model to the example data set. Note that
the model does a good job of generating MALDI-TOF-like functions. This figure appears in color in the electronic version of
this article.

and Veenstra, 2005; Coombes, Morris, 2005; Hu et al., 2005;
Villanueva et al., 2005) have demonstrated that MALDI-TOF
instruments can be very sensitive to experimental conditions,
even varying over time within the same laboratory. These dif-
ferences can manifest in systematic changes in both the inten-
sities and locations of the peaks (i.e., both the y and x axes),
and are sometimes larger in magnitude than the biological
effects of interest. Thus, it is important for us to adequately
model these block or batch effects if we are to properly analyze
these data.

Organ-by-cell line experiment: In this study, a tumor from
one of two cancer cell lines was implanted into either the
brain or lungs of 16 mice. The cell lines were A375P, a
human melanoma cancer cell line with low metastatic po-
tential, and PC3MM2, a highly metastatic human prostate
cancer cell line. After a period of time, blood serum was
extracted and then placed on a SELDI chip. This chip was
run on the SELDI-TOF instrument twice, once using a low
laser intensity and the other using a high laser intensity. This
resulted in a total of 32 spectra, two per mouse. Here, we
considered the part of the spectrum between x = 2,000 and
14,000 Daltons, a range that included 7,985 observations per
spectrum.

Our primary goals are to assess whether differential pro-
tein expression, if present, is more tightly coupled to the host
organ site or to the donor cell-line type, and to identify re-
gions of the spectra differentially expressed by organ site, by
cell line, and/or their interaction. Typically, spectra from dif-
ferent laser intensities are analyzed separately, which is in-
efficient because spectra from both laser intensities contain
information on the same proteins. We want to perform these
analyses combining information across the two laser intensi-
ties, requiring us to model an effect of laser intensity on both
the location (x axis) and intensity (y axis) of the peaks, and
to account for correlation between spectra obtained from the
same mouse.

It is common to use a two-step approach to analyze mass
spectrometry data (Baggerly et al., 2003; Yasui et al., 2003;
Coombes et al., 2003; Coombes, Tsavachidis, et al., 2005;
Morris et al., 2005; Randolph et al., 2005). First, some type
of feature detection algorithm is applied to identify peaks in
the spectra. A quantification is then obtained for each peak
and each spectrum, for example, by taking the intensity at a
local maximum or computing the area under the peak. As-
suming there are p peaks and N spectra, this results in a
p × N matrix of protein expression levels that is somewhat
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analogous to the matrix of mRNA expression levels obtained
after preprocessing microarray data. Second, this matrix is
analyzed using methods similar to those used for microarrays
to identify peaks differentially expressed across experimental
conditions, while controlling the false discovery rate (FDR).

This two-step approach is intuitive because it focuses on the
peaks, which are theoretically the most scientifically relevant
features of the spectra, and convenient, because it can borrow
from a wide array of available methods developed for microar-
rays. However, it also has disadvantages. First, important in-
formation can be lost in the reduction from the full spectrum
to the set of detected peaks. Because group comparisons are
only performed after peak detection, this approach will miss
important differences in low-intensity peaks or on shoulders
of peaks whenever the peak detection algorithm fails to de-
tect them. Second, this approach affords no natural way to
account for experimental effects that impact both the x and
y axes of the spectra, such as block or batch effects.

An alternative to the two-step approach described above is
to model the spectra as functions, in the spirit of functional
data analysis (Ramsay and Silverman, 1997). D. Billheimer
(unpublished manuscript) took this approach, and this is the
approach we take in this article. Mass spectra are irregular
functions with many peaks, and so require flexible model-
ing and spatially adaptive regularization to represent accu-
rately. The wavelet-based functional mixed model introduced
by Morris and Carroll (2006) possesses these properties, and
in this article we use this methodology to model mass spec-
trometry data. In modeling the entire spectrum, this method
has the potential to identify differences at locations missed
by peak detection algorithms. Further, the method’s flexible
nonparametric representation of the fixed and random effects
allows it to model the functional effects of a number of factors
simultaneously, including factors of interest as well as nui-
sance factors related to the experimental design. As we will
demonstrate, these nonparametrically modeled effects can ac-
count for differences on both the x and y axes of the spectra,
allowing data to be combined across laser intensities, blocks,
or other experimental factors. The output of the method can
be used to identify regions of interest within the spectra in a
way that takes both statistical and practical significance into
account, while controlling the Bayesian FDR at a specified
level.

Although the primary goal of this article is to apply an
existing method to the setting of mass spectrometry, we
also present some new methodological advances not found in
Morris and Carroll (2006). First, we describe a systematic
method for selecting an additive shrinkage constant to apply
before log transformation in a way that controls the bias for
fold-change estimates at peak intensities of a specified size.
Second, we introduce a method for identifying regions of the
spectra that are differentially expressed in a way that takes
both statistical and practical significance into account, and
controls the Bayesian FDR below a certain threshold. Given
this threshold, we also demonstrate how to compute the corre-
sponding estimated false negative rate, sensitivity, and speci-
ficity. These principles can be applied to any Bayesian setting
yielding posterior samples of effects or of some other indica-
tor of biomarker status. To our knowledge, this is the first
presentation of FDR-based methods for the functional data

setting. Third, although our method does not require that
peak detection be done, we demonstrate how to perform peak
detection from the method’s output in case it is desired.

The remainder of the article is organized as follows. In Sec-
tion 2, we describe some preprocessing steps that must be
performed before analyzing MALDI-TOF data, and present a
systematic method for choosing an additive shrinkage con-
stant before log transforming the spectral intensities. Sec-
tion 3 describes the wavelet-based functional mixed model,
and explains how model specification should proceed for
MALDI-TOF data. In Section 4, we present our Bayesian-
FDR–based approach for identifying significant regions of
the spectra, and describe how to perform peak detection,
if desired. We present results from analysis of the example
data sets in Section 5, and conclude with a discussion of the
strengths and weaknesses of this approach in Section 6.

2. Preprocessing MALDI-TOF Data
A number of preprocessing steps must be performed before
modeling MALDI-TOF or SELDI-TOF data, regardless of
the ultimate approach used for inference. It has been shown
that inadequate or ineffective preprocessing can make it dif-
ficult to extract meaningful biological information from the
data (Sorace and Zhan, 2003; Baggerly et al., 2003, 2004).
These steps include calibration, baseline correction, normal-
ization, denoising, and transformation. Calibration must be
done to align the peaks across different spectra. The base-
line, frequently seen in MALDI-TOF and SELDI-TOF spec-
tra, is a smooth underlying function that is thought to be
largely due to a large cloud of particles striking the detec-
tor in the early part of the experiment (Malyarenko et al.,
2005). This baseline artifact must be removed. Normalization
refers to a constant multiplicative factor that is used to ad-
just for spectrum-specific factors, for example, to adjust for
different amounts of total protein ionized and desorbed from
the sample. Denoising is used to remove white noise, which
is largely due to electronic noise from the detector, from the
spectrum. In recent years, various methods have been pro-
posed to deal with these issues. Here, we use the methods de-
scribed by Coombes, Tsavachidis, et al. (2005). The first two
columns of Figure 1 contain a raw spectrum and correspond-
ing preprocessed MALDI spectrum from a cancer sample and
a control sample, and demonstrate the effects of preprocess-
ing.

It is often useful to transform the spectral intensities in
order to reduce the skewness in their distribution. Some op-
tions that appear to work well include the log transforma-
tion and the cube root transformation (Coombes, Tsavachidis,
et al., 2005; D. Billheimer, unpublished manuscript). Here, we
choose the log2 transformation because it leads to good inter-
pretations in terms of fold change. For example, a difference of
1 in this scale corresponds to a two-fold increase in intensity.

The presence of zero intensities makes it necessary to add
a small positive constant ε to each intensity before taking the
log. This constant shrinks any fold-change estimates toward
1, with stronger shrinkage at lower intensities. Here we de-
scribe a systematic approach for choosing ε for a given setting.
Suppose we wish to control the shrinkage factor for spectral
intensities of at least γ to be no less than α, meaning that the
shrunken estimate of a true fold change of δ would be at least
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δα. This is accomplished by choosing ε = {(1 − α) ∗ γ ∗ δ}/
{α ∗ δ − 1}. For the analyses presented in this article, we
chose ε = 0.25. This guaranteed that given a fold-change dif-
ference of 2 at spectral locations with intensities of at least
1.0, the fold-change estimate will be no less than 1.8, and at
spectral intensities of 5.0 or more, the expected fold-change
estimate will be no less than 1.95. Effectively, this choice leads
to very little shrinkage in regions of the spectra nearby the
true protein peaks, but reduces the possibility that spurious
differences will be detected at very low intensities because of
the log scale that was used.

3. Wavelet-Based Functional Mixed Models
In this section, we briefly overview the wavelet-based func-
tional mixed model method introduced by Morris and Carroll
(2006) and describe how to apply it to mass spectrometry
data. See that paper for further details on its modeling as-
sumptions and computational procedure.

The functional mixed model we present here is a special
case of the one discussed by Morris and Carroll (2006), and is
also like the functional mixed model discussed by Guo (2002).
Suppose we observe N functions Y i(t), i = 1, . . . ,N , all de-
fined on the closed interval T ∈ 	1. In MALDI-TOF data,
these functions are the preprocessed, log-transformed spectra
on the time axis t. A functional mixed model for these data
is given by

Yi(t) =

p∑
j=1

XijBj(t) +

m∑
k=1

ZikUk(t) +Ei(t), (1)

where Xij are covariates, Bj(t) are functional fixed effects,
Zik are elements of the design matrix for functional random
effects Uk(t), and Ei(t) are residual error processes. We as-
sume that Uk(t) are independent and identically distributed
(i.i.d.) mean-zero Gaussian processes with covariance surface
Q(t1, t2), and Ei(t) are i.i.d. mean-zero Gaussian processes
with covariance surface S(t1, t2), with Uk(t) and Ei(t) as-
sumed to be independent. A parsimonious yet flexible struc-
ture will be used to represent Q and S, as described below.
One may allow different strata, h = 1, . . . ,H, to have their
own covariance matrices Qh and Sh by splitting the random
effect functions and residual error processes into blocks, for
example, to allow cancer and control spectra to have different
covariance surfaces.

Covariates {X.j , j = 1, . . . , p}, discrete or continuous, are
specified for any factor one wants to relate to the mass spec-
tra. Each functional coefficient Bj(t) describes the effect of
the corresponding factor at location t of the spectrum. The
covariates can include a column of 1’s for an overall mean
spectrum, continuous or discrete variables of interest, clinical
or experimental covariates for which one would like to ad-
just, and any interactions among these factors. As in linear
mixed models, absent constraints one must take care in pa-
rameterizing the X.j so that the resulting design matrix X =
(X.1, . . . ,X.p) has full column rank.

When the spectra are not independent, the functional ran-
dom effects provide a flexible mechanism for modeling corre-
lation among spectra. For example, individual-level random
effect functions can be specified when multiple spectra are ob-
tained from the same individual, and additional random effect

functions can be specified for other clustering units, such as
blocks or laboratories when the spectra are obtained over a
long period of time or at many different locations.

An important feature of this model is that it places no re-
strictions on the form of the fixed or random effect functions,
because for MALDI-TOF data we expect their true form
should be very irregular and spiky. Although their high di-
mensionality precludes unstructured representation, it is also
important to allow flexibility in the forms of Q and S, as
described below, because irregular and spiky curve-to-curve
deviations imply irregularity in these matrices, as well.

It is possible to write a discrete matrix version of model (1)
if we have all spectra observed on the same equally spaced grid
t = (tl; l = 1, . . . ,T ), as

Y = XB + ZU +E. (2)

Each row of the N × T matrix Y contains one spectrum ob-
served on the grid t. The matrix X is an N × p design matrix
of covariates; B is a p × T matrix whose rows contain the
corresponding fixed effect functions on the grid t. Bjl denotes
the effect of the covariate in column j of X on the spectrum
at clock tick tl. The matrix U is an m × T matrix whose
rows contain random effect functions on the grid t, and Z is
the corresponding N × m design matrix. Each row of the
N × T matrix E contains the residual error process for the
corresponding observed spectrum. We assume that the rows
of U are i.i.d. MVN(0, Q) and the rows of E are i.i.d. MVN(0,
S), independent of U, with Q and S being T × T covariance
matrices that are discrete analogs of the covariance surfaces
in (1), defined on the grid t × t.

Morris and Carroll (2006) used a basis function approach
to fit the model (2). They chose wavelet basis functions, which
possess various properties that make them well suited for rep-
resenting MALDI-TOF data. First, their compact support al-
lows them to efficiently model the spikes in the data. Second,
their whitening property allows us to make parsimonious yet
flexible assumptions on the covariances Q and S. Specifically,
the assumed structure requires only T parameters for each of
these matrices, yet it accommodates various types of nonsta-
tionarities characteristic of MALDI-TOF data, for example,
allowing the between-spectra variances and within-spectrum
smoothness to vary across different regions of the spectra.
This point is illustrated by Figure 1 of Morris and Carroll
(2006). Third, their decomposition of the spectral energy in
both the frequency and time domains makes it possible to
perform adaptive regularization on the fixed effect functions.
By adaptive regularization, we mean that the functional es-
timates are denoised or smoothed in a manner that tends
to preserve strong peaks, which are important features that
characterize these functions in MALDI-TOF applications. Fi-
nally, given spectra sampled on an equally spaced grid of
length T, the special structure of the basis functions allows
us to quickly compute a set of T wavelet coefficients using
a pyramid-based algorithm, the discrete wavelet transform
(DWT), in just O(T) operations. Conversely, given the set
of wavelet coefficients, the function can be constructed using
the inverse discrete wavelet transform (IDWT), also in O(T)
operations.

The wavelet-based approach to fitting the functional mixed
model involves three steps. First, the wavelet coefficients are
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computed by applying the DWT to each of the N spectra. This
step effectively projects the observed spectra into the space
spanned by the chosen wavelet bases. Second, a Markov chain
Monte Carlo (MCMC) simulation is performed to obtain pos-
terior samples of the model parameters in a wavelet-space
version of the functional mixed model. Third, the IDWT is
applied to the posterior samples, yielding posterior samples
of the parameters B, U, Q, and S in the data-space functional
mixed model (2). These posterior samples can subsequently
be used to perform any desired Bayesian inference.

Morris and Carroll (2006) made the code for performing
these steps freely available at the following website: http://
biostatistics.mdanderson.org/Morris/papers.html. This
code has since been updated to effectively handle the ex-
tremely large data sets characteristic of MALDI-TOF data
(100’s of spectra, each on a grid of 10,000–20,000). The code
is a standalone executable that runs on a Windows-based
PC, and takes Matlab data files for the required input. The
required input includes the matrix of log-transformed, pre-
processed spectra, Y, plus a structure specifying the model
used (at a minimum, X and Z, if present, must be speci-
fied), a structure specifying the wavelet basis to use, and an-
other structure containing the MCMC specifications. Details
are given in the documentation provided with the code. The
output of this code is Matlab files containing the posterior
samples for the model parameters resulting from the MCMC.

The third column of Figure 1 contains spectra randomly
generated from the posterior predictive distribution of the
wavelet-based functional mixed model fit to the pancreatic
cancer example data set, and illustrates that the model is
flexible enough to generate functional data characteristic of
MALDI-TOF.

4. Bayesian Inference for MALDI-TOF
Here, we describe how to perform Bayesian inference for
MALDI-TOF experiments using the posterior samples out-
put from the wavelet-based functional mixed model. First, we
describe how peak detection can be done, if desired. Second,
we describe how to identify significant regions of the spec-
tra while controlling the expected Bayesian FDR, and then
summarize the global properties of this significance rule.

Peak detection: A key benefit of our functional approach is
that peak detection is unnecessary. For those who still wish to
restrict attention to the peaks, however, it is straightforward
to perform peak detection from the posterior samples output
from the wavelet-based functional mixed model. Morris et al.
(2005) describe a peak detection approach and demonstrate
that performing peak detection on the mean spectrum results
in greater sensitivity and specificity than the usual approach
of performing peak detection on the individual spectra. Be-
cause the mean spectrum is easily obtainable from the func-
tional mixed model either as a fixed effect function or as a
linear combination of fixed effect functions, it is easy to adapt
the procedure described in that paper to detect and quantify
peaks in this setting, as well.

The mean spectrum estimate from the wavelet-based func-
tional mixed model differs from the simple pointwise mean
spectrum in several ways. First, it is denoised (adaptively reg-
ularized) as a result of the shrinkage induced by a spike-slab
prior that is assumed on the wavelet coefficients for the fixed

effect functions. The benefit of this denoising is that it reduces
the number of small, spurious bumps that are called peaks.
Second, the mean spectrum estimate will adjust for other ef-
fects in the model. For example, including a block or laser
intensity effect improves the alignment across the different
groups of spectra, thus sharpening the peaks in the estimated
mean spectrum and making them easier to detect. Third, the
denoising of the mean spectrum is affected by the random ef-
fect and residual variance structure of the functional mixed
model. As can be seen by the formulas presented in Morris and
Carroll (2006), both the random effect structure and residual
variance directly impact the wavelet shrinkage of the fixed ef-
fect functions. This may also lead to improved denoising over
the simple pointwise mean spectrum, especially in data sets
with imbalanced designs in terms of the number of spectra
per individual.

Morris et al. (2005) also perform a wavelet-based de-
noising step on the mean spectra before detecting peaks.
An important difference is that the approach described in
that paper uses the undecimated discrete wavelet transform
(UDWT, also sometimes called the translation invariant or
maximum overlap discrete wavelet transform), whereas the
wavelet-based functional mixed model works with the deci-
mated DWT (DDWT). The UDWT is translation invariant,
whereas the DDWT is not. This means that arbitrary trans-
lations in the x-axes of the spectra will result in different
wavelet coefficients for the DDWT, but not for the UDWT.
It has been observed that the translation-invariant property
can lead to better denoising, but at the cost of computational
time and parsimony. The calculations for the UDWT are of
order up to O{T log (T)} rather than O(T), and the full range
of translations would yield a great deal more coefficients to
model, increasing the memory demands on the procedure.
Although it would be possible to apply the wavelet-based
functional mixed model in the UDWT context, we choose to
stick with the DDWT here because with reasonably aligned
spectra taken at a high sampling frequency, the differences
are not great, and the increased computational and com-
puter memory demands from the UDWT would make it more
difficult to apply the method to these extremely large data
sets.

Identifying significant regions of spectra: Our primary analy-
sis goal in this article is to identify regions of the spectra that
are differentially expressed across factors of interest, which
can subsequently be mapped to proteins that may serve as
useful biomarkers. In microarrays, two classical approaches
for handling differential expression are (i) to identify all genes
with a fold-change difference of at least δ and (ii) to identify
genes that differ significantly across treatment groups accord-
ing to a statistical hypothesis test. Option (i) is intuitive to
many researchers but lacks statistical rigor because it ignores
the variability in the data, and option (ii) only focuses on
statistical significance, ignoring practical significance, because
it is typically based on a null hypothesis of equality. In the
present MALDI-TOF context, we identify differentially ex-
pressed regions of the spectra in a way that considers both sta-
tistical and practical significance, and controls the expected
Bayesian FDR to be no more than α.

Suppose we are interested in identifying biomarkers that
have at least a δ-fold intensity change between treatment
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groups. From the MCMC, suppose we have G posterior
samples of the corresponding fixed effect function Bj =

[Bj(t1), . . . ,Bj(tT )] on the log2 scale, denoted by {B(g)
j ,

g = 1, . . . ,G}. From these, we compute the pointwise pos-
terior probabilities of at least a δ-fold intensity change at
each spectral location as pj(tl) = Pr{|Bj(tl)| > log2(δ) |Y } ≈
G−1

∑G

g=1 I{|B
(g)
j (tl)| > log2(δ)} for (tl, l = 1, . . . ,T ). We re-

place any pj(tl) = 1 with 1 − (2 ∗ G)−1. These posterior
probabilities can also be computed for any contrast involving
the fixed effect functions, A(g) =

∑p

j=1 CjB
(g)
j , or similar pos-

terior probabilities can be computed for linear combinations
of spectral locations, for example, if one wanted to detect
peaks and look at areas under peaks, or only consider tl that
are flagged as peaks. The quantity 1 − pj(tl) can be consid-
ered a local FDR estimate for location tl for factor i. Global
properties are described below.

Given a desired global FDR-bound α, we flag the set of lo-
cations ψj = {tl : pj(tl) > φα} as significant spectral regions
for factor j. In order to obtain φα, we first sort {pj(tl), l =
1, . . . ,T} in descending order to obtain {p(l), l = 1, . . . ,T}.
Then φα = p(λ), with λ = max[l∗ : (l∗)−1

∑l∗

l=1{1 − p(l)} ≤ α].
The threshold φα is a cutpoint on the posterior probabilities
that controls the expected Bayesian FDR at level α, in the
sense that on average we expect ≥100(1−α)% of the locations
in the set ψj to have a true δ-fold difference in expression,
as estimated by the wavelet-based functional mixed model.
That is, if N (ψj) is the cardinality of the set ψj , defined as

N (ψj) =
∑T

l=1 I(tl ∈ ψj), then N (ψj)
−1

∑
tl∈ψj

Pr{|Bj(tl)| ≤
log2(δ) |Y } ≤ α. If p∗ factors are to be investigated simultane-
ously, it is possible to either use one common threshold φα or
separate thresholds for each factor, {φj,α, j = 1, . . . , p∗}. This
use of Bayesian FDR is similar in principle to the approach
used by Newton et al. (2004).

Given the set of locations ψj = {tl : pj(tl) > φα} flagged
as discoveries, we can compute model-based estimates of the
FDR, false negative rate, sensitivity, and specificity for detect-
ing differentially expressed locations. Defining ψ′

j ∪ ψj = T ,
and N (S) as the cardinality of set S, defined as above,
the FDR is estimated by {N (ψj)}−1

∑
tl∈ψj

{1 − pj(tl)}, the

false negative rate by {N (ψ′
j)}−1

∑
tl∈ψ′

j
{pj(tl)}, sensitivity

by {
∑T

l=1 pj(tl)}−1
∑

tl∈ψj
pj(tl), and specificity by [

∑T

l=1{1 −
pj(tl)}]−1

∑
tl∈ψ′

j
{1 − pj(tl)}. In the idealized functional set-

ting, ψj is a set of continuous regions, and the estimates given
above are approximations of the continuous versions of these
quantities obtained by substituting integrals over t for the
summations, and defining N (S) as the Lebesgue measure of
set S. The interpretations of these quantities in the continu-
ous case are also analogous. For example, if flagging a region
ψj as significant corresponds to an FDR of α, then the ex-
pected proportion of the set of contiguous regions ψj that is
truly differentially expressed at least δ-fold is 1 − α, based on
Lebesgue measure.

For MALDI-TOF data, these measures do not depend
heavily on the sampling frequency of the data. To demonstrate
this point, we computed the threshold φα for the pancreatic
cancer example while downsampling the spectra in multiples
of 2, 3, 4, 6, and 8. The results are available in Supplementary

Figure 2. We found nearly identical thresholds and flagged re-
gions in each analysis.

Although applied to the wavelet-based functional mixed
model setting here, this approach for identifying cutpoints for
significance and summarizing the resulting global properties
can be used in any Bayesian context in which we obtain the
posterior probability of “discovery” for each of a number of
discrete units or continuous regions.

5. Analysis of Example Data
For both examples, we modeled the spectra on the time scale
t but plotted results on the biologically meaningful mass-per-
unit-charge scale (m/z, x). In our wavelet-space modeling, we
chose the Daubechies wavelet with vanishing fourth moments
and performed the DWT down to J = 10 and J = 9 levels
for the two respective examples. Other wavelet bases were ex-
amined and yielded equivalent results. We used the modified
empirical Bayes procedure described by Morris and Carroll
(2006) to estimate the shrinkage hyperparameters that guide
the adaptive regularization of the fixed effect functions. For
each example, we ran 10 parallel chains, each consisting of
1000 iterations after a burn-in of 1000, and we kept every
fifth iteration for a total of G = 2000 MCMC samples for our
analyses. All chains appear to have converged, as indicated by
trace plots. In the pancreatic cancer example, the median and
99% intervals for the Metropolis–Hastings acceptance proba-
bilities across the roughly 12,000 covariance parameters were
0.22 and (0.11, 0.31), respectively, and for the organ-by-cell
line example with roughly 8000 covariance parameters, they
were 0.17 and (0.05, 0.51), respectively.

We explored the possible protein identities of any flagged
regions by running the estimated m/z values of the
corresponding peaks in the region through TagIdent, a
searchable database (available at http://us.expasy.org/

tools/tagident.html) that contains the molecular masses
and pH for proteins observed in various species. For the organ-
by-cell line example, we searched for proteins emanating from
both the source (human) and the host (mouse) whose molec-
ular masses were within the estimated mass accuracy (0.3%)
of the instrument from the nearest peak or most significant
location of each flagged region. This only gives an educated
guess at what the protein identity of the peak could be; it is
necessary to perform an additional mass spectrometry/mass
spectrometry (MS/MS) experiment in order to rigorously val-
idate the protein identity.

Pancreatic cancer example: The design matrix for this data
set of N = 256 spectra was chosen to have p = 5 columns, the
first column indicating cancer (=1) or normal (=−1) status,
and corresponding to a functional cancer main effect B1(t)
describing the difference between the mean log2 intensities of
cancer and normal spectra at time t. The final four columns
indicate the time blocks, and correspond to mean spectra for
the respective time blocks (Bi(t), i = 2, . . . , 5). The block
effects between block i and i′ can be constructed by Bi(t) −
Bi′(t). No functional random effects were specified. The resid-
ual covariance matrix S was allowed to vary across cancer
status.

The top two panels of Figure 2 contain posterior means
and 95% credible intervals for the cancer main effect function
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Figure 2. Fixed effect curves. (a) and (c): Posterior mean and 95% pointwise posterior credible bands for cancer main effect,
pancreatic cancer example, and organ main effect, organ-by-cell line example, respectively. The horizontal lines indicate 1.5-
fold and 2.0-fold differences in the two examples, respectively, and the dots indicate peaks detected using the average spectrum.
(b) and (d): Pointwise posterior probabilities of (b) 1.5-fold difference in cancer/normal in pancreatic cancer example and (d)
2.0-fold difference in brain/lung in organ-by-cell line example. The dots indicate detected peaks, and the dotted lines indicate
the threshold for flagging a location as significant, controlling the expected Bayesian FDR to be less than 0.10 and 0.05 in
the two examples, respectively. Any spectral locations with posterior probabilities above this line were flagged as significant.
This figure appears in color in the electronic version of this article.

and the corresponding pointwise posterior probabilities of at
least 1.5-fold expression. The dots in the plots correspond
to the 227 peaks detected on the posterior mean for the
overall mean spectrum µ̂(t) = (4G)−1

∑G

g=1

∑5
i=2 B

(g)
i (t). The

horizontal dotted line in the upper right panel indicates the
threshold on the posterior probabilities φ10 = 0.595 corre-
sponding to an expected Bayesian FDR at 0.10. This thresh-
old yielded a false negative rate of 0.016, a sensitivity of 0.716,
and a specificity of 0.996. There were a total of 506 spectral
locations contained within 16 contiguous regions that were
flagged as significant (i.e., appear above the 0.595 threshold
in the upper right picture). Analyzing the peaks, we found
26/227 were flagged as significant. A list containing the sig-
nificant regions and peaks, and a plot of the overall mean
spectrum with detected peaks are available in Supplementary
Tables 1–3 and Supplementary Figure 3.

The most significant effects were observed in the regions
(i) (17230D, 17311D), (ii) (8730D, 8787D), and (iii) (11314D,
12037D), with maximum posterior mean fold-change differ-
ences of 1/2.46, 1/2.20, and 2.77, respectively, between can-
cers and normals. A fold change of δ means that cancer was
overexpressed relative to normal by a factor of δ, whereas a
fold change of 1/δ means that normal was overexpressed rel-
ative to cancer by a factor of δ. The maximum fold-change
differences for all three of these regions were located at peaks.
These were also identified in Koomen et al. (2005). In that
paper, they reported MS/MS results confirming the identity

of (i) as a fragment of apolipoprotein A-I or apolipoprotein
glutamine-I, and the cluster of 7 peaks in (iii) as serum amy-
loid A. Based on TagIdent, region (ii) may correspond to
complement C4-A or C4-B(precursor), 8764.07D, mediators
of inflammatory processes that circulate in the blood.

One peak (4284D) found to be statistically significant and
highlighted by Koomen et al. (2005) had a very small fold-
change estimate (1.22), and thus by design was not flagged
by our analysis. Also interesting was the region (8671D,
8684D) that was on the upslope of a very abundant peak
at 8688D. The peak itself was not flagged (p = 0.186), but
this region was, with a maximum fold change of 1/1.70 at
8679 (p = 0.968). It is possible that this result is driven
by protein at 8679D whose peak is not visible because of
its proximity to the extremely abundant peak at 8688D. An
MS/MS experiment would have to be done to investigate this
possibility.

Plots of the block effects (see Supplementary Figure 4)
demonstrate that they affect both the location and intensity
of peaks, and are of a similar magnitude as the cancer main
effect. Figure 3 illustrates the block effect (block 1–block 2) in
the neighborhood of some prominent peaks. The nonparamet-
rically modeled block effects were able to capture both shifts
in intensity (Figure 3a) and shifts in location (Figure 3b).
Note that shifts in location appear as pulses in the nonpara-
metric block effects. These features served to calibrate the
x and y axes across blocks so that they were comparable,
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Figure 3. Block effects. Plot of the mean spectra for blocks 1 (light line) and 2 (dark line), along with the posterior mean
and 95% pointwise posterior bounds for the block 1–block 2 effect (shaded area and associated lines) near (a) the peak at
33,482 and (b) the twin peaks at 17,245 and 17,376. Part (a) illustrates that the nonparametric functional effect can model
changes in intensity, and (b) shows that the pulse-like features of the nonparametric effect account for systematic shifts in
location. This figure appears in color in the electronic version of this article.

allowing spectra from different blocks to be pooled for a com-
bined analysis.

Organ-by-cell line example: The design matrix for this
set of N = 32 spectra had p = 5 columns. We used
a cell means model for the factorial design, so the first
four columns contained indicators of the four organ-by-cell
line groups with corresponding mean functions Bi(t), i =
1, . . . , 4, ordered brain-A375P, brain-PC3MM2, lung-A375P,
and lung-PC3MM2. From these, the overall mean spec-
trum 0.25

∑4
i=1 Bi(t), the organ main effect function B1(t) +

B2(t) − B3(t) − B4(t), cell-line main effect function B1(t) −
B2(t) + B3(t) − B4(t), and the organ-by-cell line interaction
function B1(t) − B2(t) − B3(t) + B4(t) were constructed.
Column 5 indicates whether a low (−1) or high (1) laser in-
tensity setting was used in generating the given spectrum.
The Z matrix had m = 16 columns, with Zik = 1 if spec-
trum i came from animal k, with corresponding mouse-level
random effect functions Uk(t), k = 1, . . . , 16. These random
effects allow our model to account for the correlation between
different spectra generated from the same animal.

The bottom two panels of Figure 2 contain the posterior
means and 95% credible intervals for the organ main effect
function and the corresponding pointwise posterior probabili-
ties of at least 2-fold difference, respectively. Equivalent plots
for the cell-line and interaction effects are available in Supple-
mentary Figure 6. The threshold on the posterior probabilities
based on setting the expected Bayesian FDR of 0.05 was φ05 =
0.874, which led to a false negative rate of 0.469, a sensitivity
of 0.204, and a specificity of 0.987. We flagged 1393/7985 of
the spectral locations in 41 contiguous regions for the organ
main effect, 798/7985 in 25 contiguous regions for the cell-
line main effect, and 594/7985 in 18 contiguous regions for

the organ-by-cell line interaction effect. Of the 101 detected
peaks, we flagged 40 as significant, 13 for organ alone, 13 for
cell line, 1 for both organ and cell line, and 13 for the interac-
tion. Table 1 contains information for the top 10 most signif-
icant regions, all of which contained locations with posterior
probabilities pj(tl) > 0.9995. The complete list of significant
regions and peaks is available in Supplementary Tables 4–7.

The strongest differences observed were between organ
groups. The largest estimated fold changes were observed in
the regions [3658D, 3739D] and [3866.3D, 3971.3D]. These re-
gions each contain a peak that is strongly present in all mice
with tumors injected into their brains, but absent from those
injected in their lungs. The region [3866.3, 3971.3] is repre-
sented in Figure 4a and c. This region may correspond to a cal-
citonin gene-related peptide II precursor (CGRP-II, 3882D),
a peptide in the mouse proteome that dilates blood vessels in
the brain and has been observed to be abundant in the central
nervous system (http://www.expasy.org/uniprot/Q99MP3).
The region [3658D, 3739D] may correspond to a precur-
sor of amyloid beta A4 protein in the mouse proteome
(3717.1D) that “functions as a cell surface receptor and per-
forms physiological functions on the surface of neurons rele-
vant to neurite growth, neuronal adhesion and axonogenesis,”
and is “involved in cell mobility and transcription reg-
ulation through protein-protein interactions” (http://
www.expasy.org/uniprot/P12023). Another flagged region
[10912D, 11269D] may also correspond to a precursor of the
same protein (11050.6D). These results may represent impor-
tant responses within the hosts to the tumor implantation in
their brains.

There were some significant effects that may not have been
detected had we restricted our attention to the peaks. The
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Table 1
Selected flagged regions from organ by cell-line example. Location of selected region (in Daltons
per coulomb) is given, along with which effect was deemed significant, estimated maximum fold
change difference within the region, and a description of the effect. These effects comprise all

those with pl > 0.9995.

Region Effect type max FC Comment

3866.3–3971.3 Organ 1/93.9 Only in brain-injected mice
3658.3–3739.0 Organ 1/118.5 Only in brain-injected mice
9902.6–10044.0 Organ 46.1 Only in lung-injected mice
4762.2–4874.8 Interaction 1/13.7 PC3MM2 > A375P, especially brain
4748.2–4868.3 Cell line 1/39.7 PC3MM2 > A375P
3743.4–3565.3 Organ 1/35.0 Brain > Lung
4952.6–5008.2 Organ 1/32.8 Brain > Lung
4519.9–4697.5 Organ 27.5 Lung > Brain
5051.3–5093.3 Cell line 1/23.5 PC3MM2 > A375P
3993.4–4061.3 Organ 21.0 Lung > Brain (on upslope of peak)
10912–11269 Interaction 1/16.4 Brain > Lung for A375P only

significant organ effect in the region [3993D, 4061D], with
maximum fold-change difference of 21.0, is on the upslope of
a peak, but the peak value itself was not significant. Also, the
region [7618D, 7650D] was flagged for an organ effect, being
specific to brain-injected mice. The protein neurogranin in
the human proteome, with a molecular weight of 7618.5D, is
active in synaptic development and remodeling in the brain.
Our mean spectrum-based peak detection procedure found no
peak in the region [7618D, 7650D], so this potential discov-

Figure 4. Select results. (a) and (b): Plot of organ main effect function in selected regions. The light and dark lines are the
organ-specific mean spectra on the untransformed intensity scale, the shaded regions and associated lines are the posterior
mean and pointwise 95% posterior bounds for the organ main effect on the log2 intensity scale. The dotted lines at 0 and
at +/−1 are provided for reference. (c) and (d): Pointwise posterior probabilities of 2-fold difference in intensity. The dots
indicate peaks detected in the mean spectrum, and the dotted line indicates the threshold on pointwise posterior probabilities
chosen so that the expected Bayesian FDR < 0.05. The lighter regions of the plot above the dotted line indicate regions
flagged as significant. This figure appears in color in the electronic version of this article.

ery may have been missed had we restricted attention to the
peaks.

Of the 25 regions flagged as significantly different across
cell lines, 22 of them were overexpressed in the metastatic
PC3MM2 cell line relative to the nonmetastatic A375P cell
line. Plots of the laser intensity effect (Supplementary Fig-
ure 7) reveal systematic differences between the low and high
laser intensity spectra that affect both the locations and in-
tensities of peaks. Our nonparametric laser intensity effect
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was able to model this difference, allowing us to pool data
from both laser intensities for this analysis.

6. Discussion
We have demonstrated how to use the recently developed
Bayesian wavelet-based functional mixed model to analyze
MALDI-TOF proteomics data. This method appears well
suited for this context, for several reasons: the functional
mixed model is very flexible; it is able to simultaneously model
nonparametric functional effects for multiple covariates, both
factors of interest and nuisance factors such as block effects.
The nonparametric functional effects for nuisance factors are
flexible enough to account for systematic changes in both
the location and intensity of peaks in the spectra. Further,
the random effect functions can be used to model correlation
among spectra that might be induced by the experimental
design. The wavelet-based modeling approach works well for
modeling functional data with many local features such as
MALDI-TOF peaks because it results in adaptive regulariza-
tion of the fixed effect functions, avoids attenuation of the
effects at the peaks, and is reasonably flexible in modeling
the between-curve covariance structures, accommodating au-
tocovariance structures induced by peaks and heteroscedastic-
ity allowing different between-spectrum variances for different
peaks. The method is extremely adaptive in terms of the types
of functions it can represent. The example in Morris and Car-
roll (2006) illustrates that it can handle smooth fixed and
random effect functions and spiky residual error processes,
whereas our examples here demonstrate that it can also han-
dle very spiky fixed and random effect functions as well. The
use of wavelet bases and the resulting adaptive regularization
are keys to this flexibility.

Before applying this method to mass spectra, it is impor-
tant to perform adequate preprocessing, at a minimum to
remove the baseline artifact and align the spectra. Variable
baselines, if not removed, can add extra noise variability to
the data, making it more difficult to identify meaningful differ-
ences. Misalignment in the spectra will cause the fixed effect
functions to be less peaked, and will increase the variability
across spectra, also decreasing the power for detecting differ-
entially expressed regions of the spectra. In our experience,
spectra obtained on a given day in a given laboratory tend to
be quite well aligned with each other, and require no further
alignment. It is still a good idea to use a heat map of the
spectra to check, and then to perform some type of function
registration if the alignment is off. Spectra from different labo-
ratories or obtained at different times, however, are frequently
severely misaligned. These systematic misalignments appear
to be handled quite well in the functional mixed model frame-
work by including nonparametric block and laboratory effects
in the functional mixed model, as long as these block effects
are not completely confounded with other effects in the model.
If there is complete confounding due to poor experimental de-
sign, however, then there is little that any statistical analysis
can do to factor out the confounding effects (Baggerly et al.,
2004, 2005; Coombes, Morris, et al., 2005).

We applied this method to two cancer proteomic stud-
ies, and identified spectral regions that were differentially ex-
pressed and may correspond to potential biomarkers. Many
of these regions contained peaks, but several may not have
been found had attention been restricted to peaks alone.

Another benefit of our approach is that both statistical and
practical significance were considered in identifying potential
biomarkers.

In the pancreatic cancer example, this method was able to
model nonparametric block effects that served to calibrate the
x and y axes across blocks, making spectra from the different
time blocks comparable and enabling them to be pooled for
a common analysis. In a similar fashion, the incorporation of
the nonparametric laser intensity effect in the organ-by-cell
line example allowed us to account for systematic differences
in spectral intensity and peak locations between the high and
low laser intensity spectra. Along with the nonparametric ran-
dom effects accounting for the correlation between spectra
from the same animal, this allowed us to pool data across
laser intensities for a common analysis, potentially increasing
our power for detecting differentially expressed proteins.

Although the method is complex, it is relatively straightfor-
ward to implement using the code freely available at http://
biostatistics.mdanderson.org/Morris/papers.html. The
user only needs to construct a matrix Y containing the pre-
processed spectral intensities for the N spectra in the study
and specify the design matrices X and Z. Starting values, em-
pirical Bayes and vague proper priors, and proposal variances
are all automatically computed by the program and can be
used without any user input. Default choices for wavelet ba-
sis and levels of decomposition are also automatically com-
puted and can be used, if desired. The code yields poste-
rior samples and summary statistics for all quantities in the
functional mixed model, from which Bayesian inference can
be conducted in a straightforward fashion. The method is
computationally intensive, but the code has been optimized
to be able to handle very large data sets, and parallel pro-
cessing can further speed the computations when it is avail-
able. For example, on average each chain of 2000 MCMC it-
erations for our pancreatic cancer example with 256 spec-
tra and 12,096 observations per spectra took under an hour
to run. In our analysis, we ran 10 of these chains in paral-
lel using Condor (http://www.cs.wisc.edu/condor), a par-
allel processing freeware that shared the job among roughly
10 Pentium IV computers in a Windows network. Computa-
tional issues are discussed in more detail in Herrick and Morris
(2006).

We described a systematic method for choosing the addi-
tive shrinkage constant before log transformation in settings
when estimating fold changes is the question of interest. This
method has applications outside of this work, in the setting
of microarrays and in other measurement technologies. We
presented a new method for identifying significant regions
of a curve that takes both statistical and practical signifi-
cance into account, while controlling the Bayesian FDR at a
prespecified level. We discussed how to assess the properties
of these discovery rules in terms of FDR and false negative
rates, sensitivity and specificity. These approaches can also
be applied outside the context of this article to any situation
for which posterior samples of fold changes are given, includ-
ing Bayesian models for microarray data, as well as other
Bayesian settings.

Wavelet-based functional mixed models show great promise
for the analysis of MALDI-TOF proteomic data. This ap-
proach may also prove useful for analyzing data from other
biomedical platforms that generate irregular functional data.



Bayesian Analysis of Mass Spectrometry Proteomic Data 489

7. Supplementary Materials
Web Tables and Figures referenced in Sections 1, 4, and 5 are
available under the Paper Information link at the Biometrics
website http://www.biometrics.tibs.org.
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