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Summary. The use of multiple drugs in a single clinical trial or as a therapeutic strategy has become
common, particularly in the treatment of cancer. Because traditional trials are designed to evaluate one
agent at a time, the evaluation of therapies in combination requires specialized trial designs. In place of the
traditional separate phase I and II trials, we propose using a parallel phase I/II clinical trial to evaluate
simultaneously the safety and efficacy of combination dose levels, and select the optimal combination dose.
The trial is started with an initial period of dose escalation, then patients are randomly assigned to admissible
dose levels. These dose levels are compared with each other. Bayesian posterior probabilities are used in the
randomization to adaptively assign more patients to doses with higher efficacy levels. Combination doses
with lower efficacy are temporarily closed and those with intolerable toxicity are eliminated from the trial.
The trial is stopped if the posterior probability for safety, efficacy, or futility crosses a prespecified boundary.
For illustration, we apply the design to a combination chemotherapy trial for leukemia. We use simulation
studies to assess the operating characteristics of the parallel phase I/II trial design, and compare it to a
conventional design for a standard phase I and phase II trial. The simulations show that the proposed design
saves sample size, has better power, and efficiently assigns more patients to doses with higher efficacy levels.
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1. Introduction
Combination therapies are now commonly used in medical
practice and clinical trials, especially in the treatment for can-
cer. A literature search in PubMed, using the term “combi-
nation therapy,” identified 132,215 articles. Korn and Simon
(1993) listed three reasons for the utility of combinations: (1)
biochemical synergism, (2) differential susceptibility of tumor
cells to different agents, and (3) higher achievable dose in-
tensity by exploiting nonoverlapping toxicities to the host.
Despite this growing popularity, caution is required when de-
signing and evaluating trials for combination therapies. This
is particularly true when combining toxic chemotherapeutic
agents in the treatment of cancer. Investigators should not
assume that the established dose level for an individual drug
is automatically safe when it is used in combination with an-
other drug.

The statistical design of combination therapy trials is worth
special consideration. The traditional clinical trial design is
based on the consideration of a single drug. The first phase of
the trial is used to find the maximum tolerated dose (MTD)
of the drug. A second phase is then conducted to determine
whether the drug has promising effects at the MTD. The un-
derlying theory is that a larger dose is associated with greater
efficacy and greater toxicity. Although this theory may be

true for many drugs, it is false for some. In combination drug
therapy, the MTDs form a curve in a two-dimensional plane.
The location of the optimal combination dose on the curve
is unknown. Therefore, a trial of drugs in combination re-
quires a dose-selection procedure that is not needed for a
single-drug trial.

Dose-finding methods for two agents in phase I trials have
been proposed by Simon and Korn (1990, 1991), Thall et al.
(2003), Conaway, Dunbar, and Peddada (2004), and Wang
and Ivanova (2005), among others. They all focused on the
identification of the MTD(s), and did not consider efficacy.
For phase II trials, we are not aware of any published article
that explicitly addresses the problem of statistical design for
combination therapies. Traditional phase II designs for single-
agent trials include the activity trial design (Gehen, 1961) and
the optimal two-stage trial design (Simon, 1989). They did not
consider dose selection.

Instead of conducting a phase I trial for toxicity and a sep-
arate phase II trial for efficacy, we propose to integrate these
two phases into one. We still require an initial dose-escalation
period for the combination doses to designate the admissible
doses, but we assess the toxicity rates during this period as
well as throughout the trial. This is because the toxicity pro-
file from a small number of patients is not reliable. Also, to
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make full use of the data, for every patient enrolled in this
dose-escalation period, his/her efficacy data will be used in
the next dose-selection stage, provided he/she meets the eli-
gibility criteria for the next phase. After completing the initial
dose-escalation period and designating the admissible doses,
we adaptively randomize patients to the admissible combina-
tion doses with unequal probabilities. The goal is to assign
more patients to doses with higher efficacy. The trial is moni-
tored at each accrual of a cohort of, say, five patients. During
these interim analyses, doses with lower efficacy are temporar-
ily closed and those with intolerable toxicity are eliminated.

In the following section, we describe the parallel phase I/II
design. In Section 3, we apply the proposed design to a trial
evaluating combination chemotherapeutic agents in the treat-
ment of acute myelogenous leukemia (AML) and myelodys-
plastic syndrome (MDS). We report the operating character-
istics of the design, and show its advantages compared to a
conventional design. We conclude with a brief discussion in
Section 4.

2. A Parallel Phase I/II Design
2.1 Dose Escalation
Throughout this article, we assume that the outcomes for
both toxicity and efficacy are binary. We use “response” and
“no response” to describe efficacy. Suppose two drugs, A and
B, have been tested separately in their previous phase I, II,
or even III trials. The MTDs for them are Da and Db , respec-
tively. An investigator now wants to evaluate the combined
effect of A and B, testing the combination of doses da1 , . . . , da

m
for drug A, and db1 , . . . , d

b
k for drug B. Often, but not neces-

sarily, da
m = Da and db

k = Db . For easy illustration, we take
m = k = 3, corresponding to the search over some low,
medium, and high doses. The dose combinations are labeled
d1 through d9, as illustrated in Figure 1. They are zoned. The
first zone has a single combination dose d1 = da1 × db1 . The
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Figure 1. An illustration of combination doses.

second zone has two combination doses: d2 = da2 × db1 and d3 =
da1 × db2 . The dose escalation starts with the first zone, and fol-
lows with the second zone, then the third zone, and so on. The
combination doses in a zone closer to the coordinate origin of
the plane are tested earlier. Combination doses in the same
zone are tested simultaneously using blocked randomization
to control the number of patients for each open dose. Some
combination doses may close, in which case blocked random-
ization is applied to the remaining open combination doses
in the same zone. We use a modified “3 + 3” design (Storer,
1989) for the initial dose escalation. Other designs for phase
I mentioned in Section 1 can also be used.

To find acceptable dose levels, the investigator specifies the
dose-limiting toxicity (DLT) for the drug(s) under considera-
tion. DLT is usually defined as side effects sufficiently morbid
that they constitute a practical limitation to the delivery of
the treatment. The modified “3 + 3” design proceeds as de-
scribed below. Three patients receive dose d1. Their responses
determine the subsequent steps, as described in the following
decision rules.

(1) If two patients (2/3) experience DLT, then we close d1

and all larger doses to testing.
(2) If no patient experiences DLT, then we designate d1 as

an admissible dose, and open doses in zone 2 for testing.
(3) If only one of the first three patients (1/3) experiences

DLT, then we assign three more patients to d1. In this
case, we assign up to six patients to this dose, and the
following decision rules apply:

(a) If only one of the six patients (1/6) experiences
DLT, then we designate d1 as an admissible dose,
and open doses in zone 2 for testing.

(b) If two of the six patients (2/6) experience DLT, then
we designate d1 as an admissible dose, and doses in
zone 2 and higher are closed to testing.

(c) If more than two of the six patients (>2/6) experi-
ence DLT, then we close d1 to testing, and we also
close doses in zone 2 and higher.

We then evaluate the higher open doses using similar rules.
The results of d2(= da2 × db1) determine the opening or clo-
sure of d4(= da3 × db1), as do the results of d3(= da1 × db2) for
d6(= da1 × db3). However, dose d5(= da2 × db2) is opened for
testing only if the results of both d2 and d3 indicate that it
can be opened. That is to say, the decision to open a com-
bination dose to testing depends upon the results of both its
horizontal and vertical neighbors in the lower dose zone.

2.2 Dose Selection Using Adaptive Randomization
After the initial dose-escalation period, the design adaptively
randomizes patients to all the admissible dose levels. There
are many approaches to determine the adaptive randomiza-
tion assignment probability for each dose level. We denote the
estimated response rates for dose levels d1 to d9 by P1 to P9,
respectively. For convenience, we call each dose level a treat-
ment arm. One approach is to let the assignment probability
for arm i be proportional to its response rate Pi estimated by
the data accumulated so far. Another approach, the play-the-
winner design, does not explicitly compute the response rates,
but achieves a similar property asymptotically (Zelen, 1969;
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Wei and Durham, 1978). A disadvantage of these approaches
is that it does not account for the reliability of the esti-
mated values of Pi . The difference between, say, Pi = 0.4 and
Pj = 0.5 results in the same difference in assignment proba-
bilities throughout the trial. Consequently, these designs are
too liberal and unstable at the beginning of the trial when
the number of patients is small. Then, at a late stage of the
trial when the number of patients is large, these designs may
be too conservative, and thus cannot take full advantage of
the adaptive randomization.

Another approach is to compare the response rates with a
target rate, say p, and let the assignment probabilities be pro-
portional to the posterior probabilities Ri = Pr[Pi > p |Data].
This approach takes into consideration the amount of infor-
mation in the data. However, adaptive randomization may
not work well with this approach when all of the true re-
sponse rates are much higher or lower than p, because all the
values of Ri are then close to 1 or 0.

We propose a new approach. We let the assignment prob-
abilities be proportional to the credibility of the supposi-
tion that one treatment arm is superior to the other arms.
That is, the assignment probability for arm i is proportional
to the posterior probability Pr[Pi > max{Pj , j �= i} |Data].
This approach does not have the disadvantages mentioned
above. The assignment probabilities depend solely on internal
comparisons between different treatment arms, rather than
on the comparison with an arbitrarily chosen target response
rate. It also distinguishes between early-stage differences
(based on a small sample and thus unreliable) and late-stage
differences (based on a large sample and thus reliable). For
example, given estimates Pi = 0.4 and Pj = 0.5, the design
will assign roughly the same number of patients to arms i and
j at the beginning of the trial, because the results are based
on data from a small number of patients. However, at a late
stage of the trial, when the results are based on data from
a relatively large number of patients, the design will assign
many more patients to arm j than to arm i.

In practice, the high-dimensional integration involved in
the computation of the above quantities can be obtained using
simulation. However, we can circumvent this still considerable
amount of computational burden by using a modification that
can give essentially the same assignment probabilities, but
with much less computation expense. The modification is as
follows. For i ≥ 2, we define Ri = Pr[Pi > P 1 |Data]. For i = 1,
we let R1 = 0.5. Then, we let the assignment probabilities be
proportional to the values of Ri , or to their squares if we want
to be more aggressive. This approach allows the quantity of
interest, that is, the comparison results, to be built directly
into the adaptive randomization scheme. It is reliable and
efficient. The choice of R1 = 0.5 is fair and is not arbitrary. If
we suppose that some arm is independent of and identical to
the first arm, then the chance for this arm to be superior to
the first arm is 0.5.

We may update the estimate of the response rate for each
dose separately. However, it is better to use a model to char-
acterize the relationship between the response rates of all the
combination doses, and update all of them together. The lat-
ter approach can borrow strength between doses, and thus is
more efficient. In the next section, we apply the proposed de-
sign to a cancer trial. We monitor the efficacy and toxicity of

each dose level throughout the trial. Doses with lower efficacy
are temporarily closed and those with intolerable toxicity are
eliminated. To do the efficacy monitoring, a logistic regression
model is used to estimate the response rates of combination
dose levels. Bayesian methods are used because of their inher-
ent convenience for sequential updating and monitoring. We
also would like to achieve desirable frequentist operating char-
acteristics for the design. This is done through simulations to
calibrate the boundary values used in the interim monitoring
and final decision.

3. Application of the Design to a Clinical Trial
3.1 Background
We design a parallel phase I/II trial for a clinical cancer
study. The study aims to evaluate the safety and efficacy
of low-dose decitabine combined with Ara-C in the treat-
ment of relapsed/refractory AML or high-risk MDS. AML is
a clonal myelopoietic stem cell disorder characterized by the
accumulation of neoplastic cells in the bone marrow and pe-
ripheral circulation. MDS comprises a heterogeneous group of
hematopoietic stem cell disorders that may evolve into AML
in 10% to 70% of individuals with this disorder. We use com-
plete remission (CR) as the response criterion. The historical
CR rate for patients with relapsed/refractory AML or high-
risk MDS is as low as 5%. The target CR rate for the exper-
imental drug combination is 20%. We evaluate the response
and toxicity rates at 6 weeks after treatment. The investi-
gators define DLT as grade 3 or higher myelosuppression or
nonhematologic toxicity, and estimate the accrual rate at 5 to
10 patients per month, which can be reduced if necessary. We
determine that a maximum of 100 patients will be enrolled in
the trial, and that the study will run for 1.5 to 2 years.

The MTD of decitabine as a single agent has been identi-
fied, and myelosuppression is the primary DLT (Kantarjian
et al., 2003). Other trials have indicated that decitabine is
most efficacious at doses much lower than the MTD (Koshy
et al., 2000; Issa et al., 2004). The toxicity and efficacy pro-
files of Ara-C have also been established. The primary goal
of this study is to find the most effective, safe dose levels
for decitabine and Ara-C when used in combination. We in-
vestigate two dose levels of decitabine that are much lower
than its MTD (low-dose levels 1 and 2), and two dose levels
of Ara-C (low and high). We also investigate both sequential
and concurrent schedules of decitabine and Ara-C. This leads
to a total of eight combination dose levels, as denoted 1 to 8
in Figure 2. The four sequential combination dose levels (la-
beled 1 to 4) are zoned similarly as in Figure 1, as are the
four concurrent combination dose levels (labeled 5 to 8).

3.2 Interim Monitoring for Efficacy and Toxicity
We conduct dose escalations for the sequential and concur-
rent therapies separately and simultaneously. Toxicities oc-
curring during either the concurrent or sequential application
of the therapies do not affect the admissibility of the dose lev-
els under the other scheme. The modified “3 + 3” algorithm
described in Section 2 is applied to both schemes. First, we
assign three patients to each of dose levels 1 and 5, using
blocked randomization. If results from both of them indicate
dose escalation, then blocked randomization is applied to dose
levels 2, 3, 6, and 7. If only dose level 1 leads to escalation
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Figure 2. Simultaneous dose escalation for sequential and concurrent therapies.

but not dose level 5, then blocked randomization is applied to
dose levels 2 and 3 only. If neither of dose levels 1 and 5 leads
to escalation, but at least one of them is admissible, the trial
proceeds to further evaluate the efficacy and toxicity of the
admissible dose(s). If both dose levels 1 and 5 are too toxic,
then we terminate the trial.

After completing the dose-escalation procedure, we begin
to adaptively randomize patients among the admissible dose
levels. We model the response rates of the combination dose
levels as follows, assuming all of the eight dose levels are ad-
missible. Modification is straightforward for situations where
not all dose levels are admissible.{

X = −0.5, for decitabine at low-dose level 0,
X = 0.5, for decitabine at low-dose level 1;

{
Y = −0.5, for low-dose Ara-C,

Y = 0.5, for high-dose Ara-C;

{
Z = −0.5, for sequential therapy,

Z = 0.5, for concurrent therapy.

Denoting the CR rate for arm i by Pi , we use the following
logistic regression model to estimate the values of Pi for all
combination dose levels,

Logit(Pi) = β0 + β1X + β2Y + β3Z. (1)

We assume that the prior distribution of β0 is Normal
(−2.944, 10), which is equivalent to a response rate of 5%,
and that the prior distributions of β1, β2, and β3 are Nor-
mal (0, 10). We choose values of −0.5 or 0.5 for X, Y, and
Z instead of the conventional 0 or 1, in order to give equal
variance to the prior distributions of the eight arms.

For the adaptive randomization, we define

Ri = Pr[Pi > P1 |data], i = 2, . . . , 8.

We also define R1 = 0.5. We compute Ri for each arm using
the above logistic regression model. The probability that the
current patient is assigned to treatment arm i is proportional
to the current estimate of Ri .

After every cohort of five patients, we update the prior
distributions for the toxicity and efficacy parameters for the
eight arms. We use all the data accumulated in the dose-
escalation period and thereafter for updating. Let Qi denote
the toxicity rate for the ith arm and ni the sample size used
by this arm. Once we start the adaptive randomization, the
following stopping rules apply.

(1) Toxicity: Stop arm i if Pr[Qi ≥ 0.33 |data] > 0.8, using
a Beta (0.1, 0.9) prior distribution for each Qi .

(2) Futility:

(a) Temporarily close any arm with Ri < 0.01. If newly
accumulated data indicate Ri > 0.01 for that arm,
then reopen it.

(b) Close the trial if max{Pr[Pi ≥ 0.20 |data], i =
1, . . . , 8} < 0.1, and if for at least four arms ni ≥
5. If the number of remaining arms is less than 4,
then require all ni ≥ 5.

(3) Efficacy: Stop the trial and select the ith arm as the
best arm if the following conditions are met:

(a) Pr[Pi ≥ 0.20 |data] > 0.90,
(b) Pr[Pi > Pj |data] > 0.80 for all j �= i, j = 1, . . . , 8,
(c) At least four arms have ni ≥ 5. If the number

of remaining arms is less than 4, then require all
ni ≥ 5.

When the maximum sample size is reached, we apply the fol-
lowing decision rules.

(1) Among the remaining arms in the trial, if arm i has the
highest probability Pr[Pi ≥ 0.05 |data] and this proba-
bility is greater than 0.95, then select arm i.

(2) If none of the remaining arms in the trial satisfies
Pr[Pi ≥ 0.05 |data] > 0.95, then select no arm, and con-
clude that none of the proposed experimental combina-
tions is promising for further investigation.

3.3 Operating Characteristics and Advantages of the Parallel
Phase I/II Design

We perform simulation studies to assess the operating char-
acteristics of the proposed design in six different scenarios:
increasing, constant, and decreasing response rates, each in
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Table 1
Operating characteristics of the proposed parallel phase I/II design

Sequential therapies Concurrent therapies

Doses 1 2 3 4 5 6 7 8 Total

Scenario 1: Response rates increasing, toxicity rates increasing
Response rate Pi 0.05 0.2 0.2 0.4 0.05 0.15 0.15 0.3
Toxicity rate Qi 0.05 0.10 0.15 0.20 0.10 0.15 0.20 0.25
Pr(closed), toxicity 0 0.04 0.08 0.38 0.04 0.18 0.24 0.59
Pr(selected), efficacy 0 0.16 0.13 0.49 0 0.03 0.03 0.13
Sample size used (ni ) 7.3 13.5 12.7 8.5 6.4 8.6 8.4 5.4 70.9

Scenario 2: Response rates increasing, toxicity rates constant
Response rate Pi 0.05 0.2 0.2 0.4 0.05 0.15 0.15 0.3
Toxicity rate Qi 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Pr(closed), toxicity 0 0 0.01 0.04 0.01 0.03 0.03 0.08
Pr(selected), efficacy 0 0.09 0.07 0.66 0 0.01 0.01 0.16
Sample size used (ni ) 6.0 11.1 11.0 11.7 5.4 8.1 8.0 9.2 70.5

Scenario 3: Response rates decreasing, toxicity rates increasing
Response rate Pi 0.3 0.15 0.15 0.05 0.2 0.10 0.10 0.05
Toxicity rate Qi 0.05 0.10 0.15 0.20 0.10 0.15 0.20 0.25
Pr(closed), toxicity 0 0.04 0.07 0.34 0.04 0.18 0.25 0.58
Pr(selected), efficacy 0.72 0.04 0.03 0 0.13 0.01 0.02 0
Sample size used (ni ) 28.7 9.5 9.4 4.3 13.8 6.7 6.3 2.8 81.6

Scenario 4: Response rates decreasing, toxicity rates constant
Response rate Pi 0.3 0.15 0.15 0.05 0.2 0.10 0.10 0.05
Toxicity rate Qi 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Pr(closed), toxicity 0 0.01 0.01 0.06 0.01 0.04 0.03 0.06
Pr(selected), efficacy 0.74 0.04 0.04 0 0.12 0.01 0.01 0
Sample size used (ni ) 32.8 9.1 9.2 4.8 13.3 6.5 6.6 4.5 86.9

Scenario 5: Response rates constant, toxicity rates increasing
Response rate Pi 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Toxicity rate Qi 0.05 0.10 0.15 0.20 0.10 0.15 0.20 0.25
Pr(closed), toxicity 0 0.04 0.08 0.36 0.04 0.17 0.23 0.60
Pr(selected), efficacy 0 0.01 0 0.01 0.01 0.01 0.01 0.01
Sample size used (ni ) 8.3 8.3 8.3 5.6 8.1 6.8 6.7 3.5 55.6

Scenario 6: Response rates constant, toxicity rates constant
Response rate Pi 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Toxicity rate Qi 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Pr(closed), toxicity 0 0 0 0.05 0.01 0.03 0.03 0.07
Pr(selected), efficacy 0 0.01 0.01 0.01 0.01 0.02 0.01 0.01
Sample size used (ni ) 8.1 8.4 8.0 7.3 8.2 7.5 7.3 6.8 61.6

combination with increasing and constant toxicity rates (see
Table 1). We perform 1000 simulations for each scenario, us-
ing scenarios 1 to 4 to estimate power, and scenarios 5 and
6 to assess the type I error rates. The results are presented
in Table 1. Proportions that are less than 0.005 are reported
as 0. We choose the boundary values for the monitoring rules
(such as 0.8 in the toxicity rule) by calibration, such that the
design has the desired properties. The features of the design
are summarized below.

First, the rules monitoring dose escalation and toxicity in
our proposed design are very conservative. For example, doses
with a toxicity rate of 25% have a chance of about 60% to be
closed by toxicity (scenarios 1, 3, and 5).

Second, the design uses adaptive randomization to assign
more patients to arms with higher efficacy, while closing arms
with high toxicity rates. These two effects determine the sam-
ple size for each arm. To see their net effects, consider scenar-
ios with either constant toxicity rates or constant response

rates. In scenario 4, all arms have a 5% toxicity rate, and the
response rates for the eight arms range from 5% to 30%. The
corresponding average sample sizes used by them range from
4.5 to 32.8. The design successfully assigns many more pa-
tients to the most effective arm. In scenario 5, all arms have a
5% response rate. The toxicity rates for the eight arms range
from 5% to 25%, and the corresponding average sample sizes
used by them decrease from 8.3 to 3.5. So the design assigns
fewer patients to more toxic arms.

Third, it is clear that this design can reduce the overall
sample size. Consider scenarios 2 and 4, where the toxicity
rates for all arms are at a constant rate of 5%. The highest
response rates are 40% and 30%, and the average total sample
sizes are 70.5 and 86.9 in scenarios 2 and 4, respectively. The
design reduces the sample sizes by stopping early for efficacy.
All treatment arms in scenario 6 have a 5% response rate and
a 5% toxicity rate, and the average total sample size is 61.6
due to early stopping for futility.



434 Biometrics, June 2007

Fourth, the design controls the type I error rate, and has
good power to select the arms with the highest response rates.
Type I error rates can be seen from scenarios 5 and 6. In sce-
nario 6, all arms have a null response rate of 5% and a low
toxicity rate of 5%. The chance for each of these arms to be
selected is always less than 2%, and the overall probability
of designating some null arm as effective is 8%. The power
of the design can be seen from scenarios 1 to 4. In scenario
4, for example, arm 1 has the highest response rate (30%),
and is selected with probability 0.74. Arm 5 has the second
highest response rate (20%) and is selected with probability
0.12. In sum, the probability of selecting one of these two
best performing arms is 86%. The best two doses are indi-
cated by bold numbers in Table 1. Although scenarios 1 to 4
are designed to estimate power, they also provide estimates
for type I error rates because they all have arms with 5%
response rates. In all of these four scenarios, the estimated
type I error rate for each null arm is zero in Table 1. Com-
paring with scenarios 5 and 6, the type I error rates are even
lower in scenarios 1 to 4. This is due to the competition for
power from those efficacious arms. This phenomenon shows
the advantage of building comparisons between arms into the
design, as opposed to separate evaluation for each arm. An
example of the latter is provided below.

3.4 Comparison with a Conventional Design
We run a second set of 1000 simulations for each of the six
scenarios using a conventional design consisting of separate
phase I and phase II trials. For easy comparison, we use total
sample sizes of 100 for the combined phase I and phase II
trials, which correspond to the sample sizes used in the sim-
ulations of the proposed design. In the phase I trial, we use
the same modified “3 + 3” method in Section 2 for dose-
escalation decisions. We then use the admissible doses in the
subsequent phase II trial. After simulating the phase I trial,
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Figure 3. Comparisons between the proposed design (white bars) and the conventional design (black bars).

we divide the remaining patients into groups of equal size,
to receive one of the admissible doses. If the division cannot
be done evenly, we let the arms of the lower dose levels have
one more patient than the other arms. Initially we assume
an independent Beta(0.05, 0.95) prior for each arm, and then
update this distribution using all the data from the phase I
and II trials. There is no logistic model, interim monitoring,
or adaptive randomization. We use the same final decision
rules that we followed in the example applying the proposed
design, that is, the arm with the highest Pr(Pi > 0.05 |data)
is selected if this posterior probability is greater than 0.95. If
no arm has this posterior probability greater than 0.95, then
the trial results are negative.

We compare the results obtained using our proposed design
with those obtained using the conventional design. The com-
parison results for scenarios 1 to 4 are illustrated in Figure 3.
The conventional design always uses 100 patients, while the
proposed design requires fewer patients, ranging from 70.5 to
86.9 in the four scenarios. Even using data from fewer pa-
tients, the proposed design has better power (Figure 3c and
3d). For example, in scenario 4, the proposed design has 74%
power to select the best performing arm (best in the sense of
having the highest response rate), whereas the conventional
design has only 57% power to select the best arm.

While the conventional design assigns equal numbers of pa-
tients to each dose level, the proposed design assigns more
patients to more effective doses. Consequently, the proposed
design, compared to the conventional design, results in higher
proportions of patients achieving response during the trial
(Figure 3b). Using scenario 4 again as an example, we find
that 20% of patients achieve response under the proposed de-
sign, compared to only 14% of patients under the conventional
design.

Other designs, such as Simon’s optimal two-stage phase
II design (Simon, 1989), also save patient resource by doing
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interim monitoring. However, it is not clear how Simon’s de-
sign can be extended to a trial involving multiple doses in
combination. Using Simon’s design for each dose would cost
too many patients but still not have direct comparisons be-
tween different doses, and thus have difficulty in identifying
the optimal dose.

4. Summary and Discussion
4.1 Summary
Combination therapies in cancer treatment are becoming
commonplace. Even though the toxicity profile of each agent
may be known, the toxicity profile of the agents used in com-
bination must be established. Due to the difficulty in identi-
fying the “highest” dose in a two-demensional dose plane, a
dose-selection procedure is necessary for combination thera-
pies. This contrasts with the case of single-agent trials. We
have proposed a design to fulfill these requirements for trials
of combination therapies. By our design, efficacy and toxicity
data are accumulated throughout the trial and adaptive ran-
domization is applied such that sample size can be reduced,
and patients can be assigned to more effective and less toxic
treatments. The proposed design also eliminates combination
doses with lower efficacy or intolerable toxicity, and stops the
trial whenever the posterior probability for safety, efficacy, or
futility crosses a prespecified boundary. Berry and Eick (1995)
discussed the advantages of adaptive assignment versus bal-
anced randomization in clinical trials.

Bayesian approaches for clinical research are elaborated
by Berry (2003, 2004), and are reviewed in a recent arti-
cle in the journal Nature (Berry, 2006). It is intuitively ap-
pealing to use Bayesian posterior probabilities in interim
monitoring and final decision making. However, multiple in-
terim analyses inflate the final type I error rate. Currently,
simulation studies are used to choose the boundary val-
ues to achieve desired frequentist operating characteristics.
This process involves a search over potential boundary val-
ues, and can be computationally expensive. It would be de-
sirable to find out formulas for the relationship between
boundary values on posterior probabilities and the operating
characteristics. These formulas should involve as input the
maximum sample size, number of combination doses, num-
ber of interim analyses, and the prior distributions of the
parameters. These results can be developed into software.
Once the software is ready, it will be posted on http://

biostatistics.mdanderson.org/SoftwareDownload/. Cur-
rently, this website has more than 30 software packages for
statistical computation, data analysis, and clinical trial de-
sign (free download).

Inoue, Thall, and Berry (2002) proposed a seamless ran-
domized phase II/III trial design. Although potentially very
useful, implementation of the seamless randomized phase
II/III trial design may be limited by regulatory guidelines.
Our parallel phase I/II design seamlessly expands phase I into
phase II. This design should be less constrained by regulatory
guidelines and readily applied in practice.

4.2 Modification of the Design in Various Situations
For simplicity, a modified “3 + 3” design is used in the dose-
escalation phase. We may replace it by another design to
take advantage of the single-agent toxicity information from

previous trials. The toxicity probability model by Wang and
Ivanova (2005) can be used to do that. Their model can
be viewed as a natural extension of the continual reassess-
ment method (O’Quigley, Pepe, and Fisher, 1990) to a two-
dimensional plane. We may also use the models by Korn and
Simon (1993) to incorporate information on the numbers of
each type of single-agent toxicity. These extensions warrant
further research.

We have used a logistic regression model to monitor the re-
sponse rates of all the combination dose levels. Even though
the logistic regression model is only approximately true, the
operating characteristics of the design are sufficiently good
for practical use. Interaction terms between covariates can be
induced in the model to further improve the performance of
the design. In future research, we may consider dynamic mod-
eling, that is, including interaction terms when they achieve a
certain level of significance and eliminating them when they
do not.

In Section 2, we have used a search over three dose levels for
a each agent as an easy illustration of the design. In practice,
three doses for each agent may not be enough. We may use
two-fold increments for each agent, starting at a very low
dose level. We may also allow the possibility to open a new
dose level that was not preplanned.

The number of combination doses is often large, and thus
it requires a large sample size to do dose escalation and se-
lection. For rare diseases such as many types of cancer, this
can be a serious problem. To reduce sample size, one may
use mathematical models such as that by Korn and Simon
(1993) as guidelines to select a small number of combination
dose levels. One may also use informative prior distributions
in the design. These prior distributions can be derived from
historical data on each single agent. Certainly meta-analyses
of results from several small trials will also be useful. Results
on these small trials may stimulate large multicenter trials.

Patients with fatal diseases may be willing to accept greater
levels of toxicity to achieve higher rates of response. For trials
involving such patients, the proposed design can be adapted
to apply a trade-off between efficacy and toxicity for dose
selection. In this case, we would use two logistic regression
models: one for response rates and the other for toxicity rates.
Details of this design, such as the quantification of the trade-
off, require further consideration.
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