
MISCLIB: A Library of Support Routines

User’s Guide

Barry W. Brown

This work supported by grant CA11672 from the

National Cancer Institute. Copyright 2010 to:

The University of Texas

M. D. Anderson Cancer Center

Department of Biostatistics

and Applied Mathematics,, Box 237

1515 Holcombe Boulevard

Houston, TX 77030

Contact: Barry W. Brown, (bwbrown@mdanderson.org)

1

1 Introduction

Misclib is a library of Fortran routines written (or in some cases adapted) by mem-

bers of the Section of Computer Science of the Department of Biomathematics in

the course of creating statistical software. The work was supported in part by grant

CA11672 from the National Cancer Institute. This grant is the core grant to M.D.

Anderson Cancer Center.

Briefly, the capabilities of this library include the following:

• Naming constants such as sixth = 1/6 and stdin=5.

• Formatting single numbers with a bit more flexibility than is provided by the

Fortran edits.

• Printing according to a template.

• Prompting and obtaining user answers – numbers or values such as yes or no.

• Calculating complete beta and gamma and erf functions.

• Prompt for a file name and open the file.

• Permute indices for an array so that the permutation yields a sorted array.

• Lexically analyse a string of characters.

• Sort a one- or two-dimension array.

• Find the zero of a monotone function of one variable.

• Find a maximum of a function of one variable.

NOTE: For simplicity in documentation, we use the old Fortran term DOUBLE

PRECISION whereas the code uses

dpkind = KIND(0.0d0)

We recommend the latter practice.

2

2 Legalities Regarding Use of this Code

We place our efforts in writing this package in the public domain. However, code

from ACM publications is subject to the ACM policy (below). evan though we may

have modified the packaging of these routines.

The routines in mathlib mod are from publications of the ACM, sometimes with

the interface slightly changed. The complete beta and gamma functions are from

the two articles by DiDinato and Morris; the cumulative error function (erf) is from

Cody. The core of the zero finder routine is from the article by Alefeld et al. The

core of the zero finder routine is from the article by Alefeld et al. The algorithm for

the maximum of a function of a single variable is from Brent (and was not published

in an ACM journal).

References

Incomplete Beta

DiDinato, A. R. and Morris, A. H. (1993) “Algorithm 708: Significant Digit Com-

putation of the Incomplete Beta Function Ratios.” ACM Trans. Math. Softw. 18,

360-373.

Incomplete Gamma

DiDinato, A. R. and Morris, A. H. (1986) “Computation of the incomplete gamma

function ratios and their inverse.” ACM Trans. Math. Softw. 12, 377-393.

Erf

Cody, W.D. (1993). “ALGORITHM 715: SPECFUN - A Portable FORTRAN

Package of Special Function Routines and Test Drivers” ACM Trans. Math. Softw.

19, 22-32.

Finding a Zero of a Monotone Function

Alefeld, G. E., Potra, F. A., Shi, Y. (1995) “Algorithm 748: Enclosing Zeros of

Continuous Functions.”, by G. E. Alefeld, F. A. Potra, YiXun Shi, ACM Trans.

3

Math. Softw., 21, No. 3, 327-344

Maximum of a Function

Forsythe, George E., Malcolm, Michael A., and Moler, Cleve B. ”Computer Methods

for Mathematical Computations”, Prentice Hall, Englewood Cliffs, NJ page 185.

they in turn credit the algorithm to Richard Brent, ”Algorithms for Mminimization

without Derivatives”, Prentice Hall (1973).

ACM Policy on Use of Code

Submittal of an algorithm for publication in one of the ACM Transac-

tions implies that unrestricted use of the algorithm within a computer

is permissible. General permission to copy and distribute the algorithm

without fee is granted provided that the copies are not made or dis-

tributed for direct commercial advantage. The ACM copyright notice

and the title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing Machin-

ery. To copy otherwise, or to republish, requires a fee and/or specific

permission.

Krogh, F. (1997) “Algorithms Policy.” ACM Tran. Math. Softw. 13,

183-186.

We do not know the policy of the Royal Statistical Society; they have discontinued

publishing algorithms. However, they made a number of these programs available

on Statlib on condition that there be no charge for their distribution.

NO WARRANTY

WE PROVIDE ABSOLUTELY NO WARRANTY OF ANY KIND EITHER EX-

PRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE

4

OF THE PROGRAM IS WITH YOU. SHOULD THIS PROGRAM PROVE DE-

FECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, RE-

PAIR OR CORRECTION.IN NO EVENT SHALL THE UNIVERSITY OF TEXAS

OR ANY OF ITS COMPONENT INSTITUTIONS INCLUDING M. D. ANDER-

SON HOSPITAL BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY

LOST PROFITS, LOST MONIES, OR OTHER SPECIAL, INCIDENTAL OR

CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY

TO USE (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA OR

ITS ANALYSIS BEING RENDERED INACCURATE OR LOSSES SUSTAINED

BY THIRD PARTIES) THE PROGRAM.

(Above NO WARRANTY modified from the GNU NO WARRANTY statement.)

3 How to Install this Library

These instructions pertain to installing as per the distributor of the code’s model in

which all routines are included in a single Fortran library called misclib.a.

The file COMPILE.IT should be modified (if necessary) and executed. The name

of the Fortran compiler in this file is g95; if you use a different compiler this string

in the file should be changed (everywhere) to the name of your compiler. The ar

(archive) command creates the library from the .o (object) files in g95 (and in Unix).

The files whose names contain the characters mod are Fortran MODULE programs

that must be USEd to be seen by the compiler. Fortran 95 compilers generally create

a file separate from the .o file that is use by the compiler in a subsequent USE. In

many compilers. this file has the suffix .mod and there is usually a compiler option

for specifying the path for the .mod files (the I option in g95). Thus, it might be

convenient to place all of the .mod files in a single directory.

5

4 biomath constants mod

4.1 Function.

Defines a number of named constants. All are dpkind (double precision) except

dpkind, spkind, stdin, and stdout.

4.2 Details

• INTEGER, PARAMETER :: dpkind = KIND(0.0D0)

• INTEGER, PARAMETER :: spkind = KIND(0.0)

• INTEGER, PARAMETER :: stdin = 5, stdout = 6

• REAL (dpkind), PARAMETER :: eight = 8.0E0 dpkind

• REAL (dpkind), PARAMETER :: five = 5.0E0 dpkind

• REAL (dpkind), PARAMETER :: four = 4.0E0 dpkind

• REAL (dpkind), PARAMETER :: hundred = 100.0E0 dpkind

• REAL (dpkind), PARAMETER :: nine = 9.0E0 dpkind

• REAL (dpkind), PARAMETER :: one = 1.0E0 dpkind

• REAL (dpkind), PARAMETER :: seven = 7.0E0 dpkind

• REAL (dpkind), PARAMETER :: six = 6.0E0 dpkind

• REAL (dpkind), PARAMETER :: sixth = one/six

• REAL (dpkind), PARAMETER :: ten = 10.0E0 dpkind

• REAL (dpkind), PARAMETER :: tenth = one/ten

• REAL (dpkind), PARAMETER :: thousand = 1000.0E0 dpkind

6

• REAL (dpkind), PARAMETER :: thousandth = one/thousand

• REAL (dpkind), PARAMETER :: three = 3.0E0 dpkind

• REAL (dpkind), PARAMETER :: twelve = 12.0E0 dpkind

• REAL (dpkind), PARAMETER :: two = 2.0E0 dpkind

• REAL (dpkind), PARAMETER :: zero = 0.0E0 dpkind

• REAL (dpkind), PARAMETER :: eighth = one/eight

• REAL (dpkind), PARAMETER :: fifth = one/five

• REAL (dpkind), PARAMETER :: fourth = one/four

• REAL (dpkind), PARAMETER :: half = one/two

• REAL (dpkind), PARAMETER :: hundredth = one/hundred

• REAL (dpkind), PARAMETER :: third = one/three

5 format number mod

Contains one generic routine that converts a number (of type real, double precision,

or integer) to a character string. The number can be left, right, or center justi-

fied. The number can be written either in F format (e.g., 99.99) or E format (e.g.,

9.999E1) depending on the size of the number.

5.1 Calling Sequence

For a real or double precision number, X, the calling sequence is:

CALL format number(x,justi,width,maxf,minf,ndecf,npe,ndece, &

& qpad,charx,qfit)

For an integer number, X, many of these arguments make no sense, so the simplified

7

calling sequence is:

CALL format number(x,justi,width,charx,qfit)

5.2 Arguments

• <type>, INTENT(IN):: X The numeric value to be converted to a char-

acter string. <type> must be one of integer, real, or double precision (or

equivalent via a KIND expression).

• INTEGER, INTENT(IN):: justi Justification of the character string rep-

resenting the number.

– -1 – Left justified

– 0 – Centered

– 1 – Right justified

• INTEGER, INTENT(IN):: width The width of the string representing

the value of x.

• <type>, INTENT(IN):: maxf. Numbers with absolute values greater

than maxf will be converted in E format. <type> must be the same as for

x. This argument is not present for integer x.

• <type>, INTENT(IN):: minf. Numbers with absolute values less than

minf will be converted in E format. <type> must be the same as for x. This

argument is not present for integer x.

Note: Values of X between minf and maxf are converted by an F format.

• INTEGER, INTENT(IN):: ndecf The number of digits after the decimal

point in the F format. This argument is not present for integer x.

• INTEGER, INTENT(IN):: npe Scale factor for exponential display. This

argument is not present for integer x.

8

• INTEGER, INTENT(IN):: ndece The number of digits after the decimal

point in the E format. This argument is not present for integer x.

• LOGICAL, INTENT(IN):: qpad IF TRUE, there will be exatly NDECF

or NDECE digits after the decimal point. If FALSE, all right-most zeros will

be deleted. This argument is not present for integer x.

• CHARACTER(LEN=*), INTENT(OUT):: charx. The character string

to receive the value of x. Should be at least width long.

• LOGICAL, INTENT(OUT):: qfit TRUE if the character value of x fits

in a string of length width else FALSE.

6 format specs – Change a template file into one

or more Fortran FORMAT statements

This functionality is provided for Fortran programmers who would rather lay out

a complex page format using a text editor rather than to manually figure out a

Fortran format.

6.1 Calling Sequence

This is a Perl script called with the statement

format specs <file list>

Each file, infile, in <file list> is processed and the resulting Fortran code is written

to a file, ‘infile.fmt’.

6.2 Description

All lines in infile are ignored until a line beginning with the characters ‘>>BEGIN’

is seen. Processing starts on the next line and continues until either a line begin-

9

ning with the characters ‘>>END’ or the characters ’>>CONTINUE’ is seen. A

processed continguous block of lines produces a Fortran format and some auxil-

lary code. The format goes into the character string called message format. A

‘>>CONTINUE’ line causes the previous block to terminate and a new one to be

begun. This function is for pages too long or complex to produce with a single

‘WRITE’ statement.

Processing of a line consists of adding the contents of the line to a Format statement

verbatim except of strings of the ‘%’ character. These strings are to be replaced by

an appropriate character string at run time.

6.3 Example

Here are the contents of the input file, infile.

Below is a ruler to show columns. It (and everything not between >>BEGIN and

>>END is ignored by format_specs.

00000000011111111112222222222333333333344444444445555555555666666666677777777778

12345678901234567890123456789012345678901234567890123456789012345678901234567890

>>BEGIN

Column1 Column2 Column3

Header Header Header

>>END

>>BEGIN

%%%%%%%% %%%%%%% %%%%%%%

>>END

The format specs program converts this into the following fragment of Fortran code

in file, infile.txt.

10

USE print_it

always_print = .TRUE..

num_subs = 0

message_format = "(&

&5X,’Column1 Column2 Column3’/&

&5X,’Header Header Header’)"

CALL print_message_format()

always_print = .TRUE.

num_subs = 3

sub_pos(1:6) = (/ 6, 13, 31, 37, 61, 67 /)

! Assign sub_strings(1:3)

! sub_string_len = 8

sub_strings(1)

! sub_string_len = 7

sub_strings(2)

! sub_string_len = 7

sub_strings(3)

message_format = "(&

&5X,’%%%%%%%% %%%%%%% %%%%%%%’)"

CALL print_message_format()

The module print it is used with this output; it contains the routine print message format

and definitions for sub strings among other things. The first call to print message format

writes the header lines moved right by five characters. The programmer should

change the code to place character values in sub strings(1), sub strings(2), and

sub strings(3) before invoking the second call to print message format. This

change must modify the lines involving sub strings into legal Fortran statments.

Presumably, the second call prints values of a table and so will be invoked within a

do loop. An example of a Fortran statement that sets the value of the sub strings is

11

WRITE (substrings,’(F8.2/I7/I7)’) val, intval1, intval2

7 Obtain Numbers from User

7.1 Call

This routine is generic for type and scalar versus singly dimensioned array. The

calling sequence for obtaining a scalar is:

SUBROUTINE get numbers(format, lo, lo eq ok, hi, hi eq ok, x, &

failed)

The calling sequence for obtaining the contents of a singly dimensioned array is

SUBROUTINE get numbers(format, lo, lo eq ok, hi, hi eq ok, x, &

number wanted,failed)

The array version has an argument, number wanted, that the scalar version lacks.

7.2 Function

The routine prints a prompting message to standard output and accepts one or more

numbers as an answer. These numbers are optionally range checked. Errors cause a

repeat of the entire process. After three unsuccessfum tries, the routine exits with

an error.

There are versions of get numbers for integer, real, and double precision values.

We use the symbol ¡TYPE¿ to indicate one of the words, ’INTEGER’, ’REAL’, or

’DOUBLE PRECISION’. The same word must be used for all arguments in the call

to the routine.

7.3 Arguments

• CHARACTER (LEN=*), INTENT(IN):: format. A Fortran format that is

written to standard output to prompt the user to enter the numbers.

12

• ¡TYPE¿. INTENT(IN), OPTIONAL:: LO. Low values for range checking

user supplied numbers. This version is for obtaining a scalar.

¡TYPE¿. INTENT(IN), DIMENSION(:), OPTIONAL:: LO. This version is

used when obtaining a singly dimensioned array.

The routine checks that the i’th number input is greater than or equal to lo(i)

if lo has dimension greater than one. If array lo has dimension 1, then all

input numbers are checked against this single value.

• LOGICAL, OPTIONAL, INTENT(IN):: lo eq ok. If TRUE then it is okay

if the answer equals the specified low bound. IF FALSE then this is an error.

Default if not presentTRUE.

• ¡TYPE¿. INTENT(IN), OPTIONAL:: hi. High values for range checking

user supplied numbers. This version is for obtaining a scalar.

¡TYPE¿. INTENT(IN), DIMENSION(:), OPTIONAL:: hi. This version is

used when obtaining a singly dimensioned array.

The routine checks that the i’th number input is less than or equal to hi(i) if

lo has dimension greater than one. If array hi has dimension 1, then all input

numbers are checked against this single value.

• LOGICAL, OPTIONAL, INTENT(IN):: hi eq ok. If TRUE then it is okay if

the answer equals the specified upper bound. IF FALSE then this is an error.

Default if not present TRUE.

• ¡TYPE¿, INTENT(OUT):: x. Variable in which to store the number. This is

the scalar case; the singly dimensioned array case is ¡TYPE¿, INTENT(OUT),

DIMENSION(:):: x

• INTEGER, INTENT(IN), OPTIONAL:: number wanted. The number of

values to be obtained from the user. If absent from the calling sequence,

SIZE(x) is used.

13

• LOGICAL, INTENT(OUT), OPTIONAL:: failed. If TRUE on return, the

routine failed to get the numbers. If FALSE, the routine succeeded.

If the argument is missing, the routine will STOP with an error message if it

does not obtain the desired numbers.

8 Choose a Character from a List

8.1 Call

SUBROUTINE get character(mssg,chars,num chars,which,qerr)

8.2 Function

The routine allows the user to be prompted to choose one of a list of characters.

Prints a prompting message specified by mssg and reads a character string which is

converted to lower case. The first non-blank character of the string is matched

against each character in chars. Returns the ordinal number of the character

matched in which.

8.3 Arguments

• CHARACTER(LEN=*), INTENT(IN):: mssg A Fortran format that

will be printed to the user prior to asking for the choice.

• CHARACTER(LEN=*), INTENT(IN):: chars A character string con-

taining one of each character that can be chosen. Note: chars should all be

lower case.

• INTEGER, INTEENT(IN);; num chars. The number of initial charac-

ters in char which should be examined for equality with the input character.

14

• INTEGER, INTENT(OUT):: which The index of the first character in

chars equal to the input character. Undefined if qerr is TRUE.

• LOGICAL, INTENT(OUT):: qerr. TRUE if a match is not achieved in

3 tries, else FALSE

.

9 Obtain Numbers from User

9.1 Call

This routine is generic for type and scalar versus singly dimensioned array. The

calling sequence for obtaining a scalar is:

SUBROUTINE get numbers(format, lo, lo eq ok, hi, hi eq ok, x, &

failed)

The calling sequence for obtaining the contents of a singly dimensioned array is

SUBROUTINE get numbers(format, lo, lo eq ok, hi, hi eq ok, x, &

number wanted,failed)

The array version has an argument, number wanted, that the scalar version lacks.

9.2 Function

The routine prints a prompting message to standard output and accepts one or more

numbers as an answer. These numbers are optionally range checked. Errors cause a

repeat of the entire process. After three unsuccessfum tries, the routine exits with

an error.

There are versions of get numbers for integer, real, and double precision values.

We use the symbol ¡TYPE¿ to indicate one of the words, ’INTEGER’, ’REAL’, or

’DOUBLE PRECISION’. The same word must be used for all arguments in the call

to the routine.

15

9.3 Arguments

• CHARACTER (LEN=*), INTENT(IN):: format. A Fortran format that is

written to standard output to prompt the user to enter the numbers.

• ¡TYPE¿. INTENT(IN), OPTIONAL:: LO. Low values for range checking

user supplied numbers. This version is for obtaining a scalar.

¡TYPE¿. INTENT(IN), DIMENSION(:), OPTIONAL:: LO. This version is

used when obtaining a singly dimensioned array.

The routine checks that the i’th number input is greater than or equal to lo(i)

if lo has dimension greater than one. If array lo has dimension 1, then all

input numbers are checked against this single value.

• LOGICAL, OPTIONAL, INTENT(IN):: lo eq ok. If TRUE then it is okay

if the answer equals the specified low bound. IF FALSE then this is an error.

Default if not presentTRUE.

• ¡TYPE¿. INTENT(IN), OPTIONAL:: hi. High values for range checking

user supplied numbers. This version is for obtaining a scalar.

¡TYPE¿. INTENT(IN), DIMENSION(:), OPTIONAL:: hi. This version is

used when obtaining a singly dimensioned array.

The routine checks that the i’th number input is less than or equal to hi(i) if

lo has dimension greater than one. If array hi has dimension 1, then all input

numbers are checked against this single value.

• LOGICAL, OPTIONAL, INTENT(IN):: hi eq ok. If TRUE then it is okay if

the answer equals the specified upper bound. IF FALSE then this is an error.

Default if not present TRUE.

• ¡TYPE¿, INTENT(OUT):: x. Variable in which to store the number. This is

the scalar case; the singly dimensioned array case is ¡TYPE¿, INTENT(OUT),

DIMENSION(:):: x

16

• INTEGER, INTENT(IN), OPTIONAL:: number wanted. The number of

values to be obtained from the user. If absent from the calling sequence,

SIZE(x) is used.

• LOGICAL, INTENT(OUT), OPTIONAL:: failed. If TRUE on return, the

routine failed to get the numbers. If FALSE, the routine succeeded.

If the argument is missing, the routine will STOP with an error message if it

does not obtain the desired numbers.

10 Obtain a Character String from the User

10.1 Call

CALL get string(fmt,nline,string,qnulok,qfail)

10.2 Function

Prompts the user to enter a character string then returns that string. Lines starting

with ‘#’ are ignored as are any characters following a ‘#’ in the middle of a line.

10.3 Arguments

• CHARACTER(LEN=*), INTENT(IN):: fmt. A Fortran format in an

array of character strings. The user prompt will be provided by WRITE

(*,fmt(i)) for each line i in fmt.

• INTEGER, INTENT(IN):: nline. The number of elements of fmt to be

processed.

• CHARACTER(LEN=*), INTENT(OUT):: string. The string entered

by the user.

17

• LOGICAL, INTENT(IN):: qnulok. If TRUE then a null line (all blanks

or comments) is acceptable. A null line causes string to be set to blanks. If

FALSE, an error message is emmitted and the process repeated.

• LOGICAL, INTENT(OUT):: qfail. TRUE if three attempts at prompt-

ing and reading failed. Otherwise FALSE.

11 Get a Yes or No Answer

11.1 Call

CALL get yn(mssg,qyes,qerr)

11.2 Arguments

• CHARACTER(LEN=*), INTENT(IN):: mssg. A Fortran format that

is printed to the user as a prompt for the yes or no answer.

• LOGICAL, INTENT(OUT):: qyes. TRUE if the answer yes (or y) was

obtained, FALSE if the answer no (or n) was obtained.

• LOGICAL, INTENT(OUT):: qfail. TRUE if 3 attempts did not yield a

yes or no answer. In that case, qyes is undefined. Otherwise FALSE.

12 Miscellaneous Mathematical Functions

12.1 Real Error Function

12.1.1 Definition

FUNCTION erf(x)

18

12.1.2 Argument

DOUBLE PRECISION, INTENT(IN):: x

x is the upper limit of integration of the error function defined by

2√
2π

∫ x

0
e−t2dt

12.2 Complement of the Error Function

12.2.1 Definition

FUNCTION erfc1(ind,x)

12.2.2 Arguments

INTEGER, INTENT(IN):: ind

DOUBLE PRECISION, INTENT(IN):: x

If ind==0 then returns the complement of the error function

erfc(x) =
2√
2π

∫ ∞
x

e−t2dt

If ind is not 0, the function returns

ex2

erfc(x)

12.3 Logarithm of the Complete Beta Function

12.3.1 Definition

FUNCTION log beta(a0,b0)

12.4 Arguments

DOUBLE PRECISION, INTENT(IN):: a0, b0

a0 and b0 are the parameters of the complete beta function which is defined as:

19

∫ 1

0
ta0−1(1− t)b0−1dt

12.5 Logarithm of the Complete Gamma Function

12.6 Definition

FUNCTION log gamma(a)

12.7 Argument

DOUBLE PRECISION, INTENT(IN):: a

a is the parameter of the complete gamma function defined by∫ ∞
0

ta−1e−tdt

12.8 EXP(X)-1

12.8.1 Definition

FUNCTION rexp(x)

12.8.2 Argument

Computes exp(x)−1 accurately. Doing the obvious leads to catastrophic cancellation

near 0.

13 open file – Get file name from user and open

it

13.1 Calling Sequence

FUNCTION open file(mssg,read only,appendable,delimiter,ierr)

20

13.2 Function

Queries the user for a file name and opens it.

13.3 Arguments

• INTEGER:: open file. The function’s return value. If the function succeeded

in eliciting an appropriate file name from the user and opening it, the funtion

returns the unit number associated with the file. Otherwise, the return value

is -1.

• CHARACTER(LEN=*), OPTIONAL, INTENT(IN):: mssg. A Fortran for-

mat yielding the message to be displayed to the user before he or she is

prompted to enter a file name. If missing or blank, no message is displayed.

• LOGICAL, OPTIONAL, INTENT(IN):: read only. A logical flag indicating

if the file should be opened for reading only. The default if missing is .FALSE.,

indicating that the file should be opened for both reading and writing.

• LOGICAL, OPTIONAL, INTENT (IN) :: appendable A logical flag indicat-

ing if the user is allowed to specify that the file should be opened for append-

ing. The default if missing is .TRUE., indicating that the user may specify

that the file be opened for appending. This argument is only meaningful if

READ ONLY is .FALSE. or missing.

• CHARACTER (LEN=*), OPTIONAL, INTENT (IN) :: delimiter.. A char-

acter string indicating the delimiter character which should be used for list

directed or NAMELIST character I/O. The default value if missing is ’none’.

Note that this argument is exactly the same as the I/O specifier DELIM.

Allowable values are ’apostrophe’, ’quote’, or ’none’. DELIMITER is not

case-sensitive.

21

• INTEGER, OPTIONAL, INTENT (OUT) :: ierr Integer error code. On fail-

ure, if IERR is present, IERR is set to a non-zero value from the list below

and the funtion returns -1; if IERR is absent, an error message is issued to

STDOUT and the code STOPs. On success, IERR is set to zero if it is present

and the function returns the unit associated with the file.

Values of ierr and their meaning are:

– -2 Illegal delimiter specification.

– -1 No units available.

– 0 No error; the file is open and associated with the unit returned as

open file.

– 1 There were MAX BAD failures getting a file name from the user.

– 2 The user chose to abort, or entered ”quit” when prompted for a file

name.

– 3 The user entered ”back” when prompted for a file name.

14 permutation sort mod

There are two generic routines in this module. The first is permutation sort matrix

that changes an identity index to a permutation corresponding to sorting the columns

of a matrix in ascending order. The matrix may be or type character, integer, real,

or double precision.

To illustrate this, suppose that the columns of the matrixhave only one row and the

four columns have real values

(3.0, 2.5, 1.6, 4.9).

Before permutation sort matrix is called, a singly dimensioned array, index, is

the identity

(1, 2, 3, 4).

22

After the call, the matrix is unchanged, but index is (3, 2, 1, 4). This indicates that

the smallest value of the array is in column 3, the next smallest in column 2, and so

on; the largest value is in column 4. Note: The routines provided here perform a

permutation sort only on two dimension arrays, not on singly dimensioned arrays.

Singly dimensioned arrays can be faked by giving a row dimension of 1.

There are generally two reasons for using a permutation sort rather than the usual

sort. One is efficiency. The usual sort interchanges rows of the matrix; the permu-

tation sort only interchanges the single elements of the index vector. The second

reason is that it is fairly common to want to sort something by something else. This

is easily done given a permutation sort on the values of something else.

14.1 Calling Sequence

CALL permutation sort matrix(a,ncol,a gt b,nrowdm,irow,index)

14.2 Arguments

• <type>:: a(ncol) where a is the array whose permutation for sorting is to

be determined and <type> is one of real (single precision), double precision,

or character(len=*).

• ncol. The dimensioned number of columns of the array to be sorted.

• logical, optional:: a gt b. If present, a logical function

logical function a gt b

that returns .TRUE. if column a is greater than column b in the desired sort

order. The interface is:

FUNCTION a gt b(a,b,irow)

The argument irow is passed from the call to sort matrix and may be used

as the user wishes. If there is no user supplied routine, the columns are sorted

in ascending order of the values in row irow.

23

• integer, intent(in);;nrowdm. The row dimension (first dimension) of a.

• integer, intent(in)::irow An auxillary integer argument passed to the func-

tion a gt b.

• integer, intent(inout);;index The singly dimensioned array to be permuted

as per the values of the rows of a. Almost always contains the integers

1 . . . nrowdm.

15 qlex: Lexical Analyser

15.1 Calling Sequence

FUNCTION qlex(string,qstart,curtyp,cval,lcval,ival,dval,indov)

15.2 Function

Each call returns one lexical element of the character string string. Tokens may be

separated by blanks – the blanks are not returned as separate tokens. Successive

calls to qlex yield successive tokens. The types of the elements returned are as

follows:

• IN Integer.

• RL Real number.

Both integers and reals can begin with a sign or a digit; a real can also begin

with a decimal point. The sign, if any, can be separated from the following

characters by blanks. The fol- lowing characters can be only digits for an

integer. A real can have with a decimal point, ’.’, followed by a fractional part

and an optional exponential part. The exponential part has the form E (or D)

followed by a number. Both types of tokens are terminated by being followed

by a blank character, an operator character, a delimiter, or a character not

24

defined to QLEX (the latter is usually an error). NOTE: Spaces between the

sign and the first character of the remainder of the number are removed in

CVAL.

• ID Alphanumeric name or identifier.

The token must begin with a letter. Succeeding characters can be letters,

digits, or one of the characters ’$’, ’.’, or ’ ’. The token is terminated by

being followed by a blank character, an operator character, a delimiter, or a

character not defined to QLEX (the latter is usually an error).

• QS Quoted character string.

A quoted string is surrounded by the same quote delimiters, which can be

either a single or double quote (’ or ”). The appearance of the quote delimiter

within a string is indicated by its doubling. Thus, the string ’don”t’ is rec-

ognized as the word ”don’t”. Any characters whatsoever may be in a quoted

string, even characters not recognized by QLEX. The quoted string returned

by QLEX in CVAL does not include the surrounding single or double quotes.

Doubled occurrences of the quoting character within the string are replaced

by a single occurrence within CVAL.

• DL Delimiter.

One of the characters ‘,’, ‘/’, ‘(’, ‘)’, ‘’, ‘’, ‘/[’, ‘/]’, ‘:’, ‘;’.

• OP String of operator symbols.

An operator symbol is one of ‘+’, ‘-’, ‘*’, ‘/’.

• UC Unrecognized Characters.

An unrecognized character is one not appearing in some definition above.

25

15.3 Arguments

• LOGICAL:: qlex. Is returned TRUE if another token is found; FALSE means

that all tokens have been obtained from the string.

• CHARACTER(LEN=*), INTENT(IN):: string. The string to be analysed.

• LOGICAL, INTENT(INOUT):: qstart. If TRUE, the lexical analysis begins

at the first character of string and qlex changes the value to FALSE. If FALSE

on input, the analysis begins one character following the last token returned.

• CHARACTER(LEN=2), INTENT(OUT):: curtyp. The two character ab-

brieviation for the returned token type as shown in the table above. E.g., IN

for integer, RL for a real number, etc. Defined only if qlex is returned TRUE.

• CHARACTER(LEN=*), INTENT(OUT):: cval. The character string com-

posing the currently found token. Defined only if qlex returns TRUE.

• INTEGER, INTENT(OUT):: lcval. The (logical) length of cval. Defined

only if qlex returns TRUE.

• INTEGER, INTENT(OUT):: ival. The integer value of the current token.

Defined only if qlex is TRUE and curtyp is ’IN’ or “RL’. If curtyp is ’RL’ and

indov==0 then contains the integer part of the value of the token..

• DOUBLE PRECISION, INTENT(OUT):: dval. The double precision value

of the current token. Defined only if qlex is TRUE and curtyp is ’RL’.

• INTEGER, INTENT(OUT):: indov. Indicator of an overflow condition..

– 0 No overflow – ival and dval defined.

– 1 The integer value of the token exceeds the range of the default machine

integer but the double precision value is okay. ival undefined; dval defined.

26

– 2 Value outside the range of a double precision number. Caused by the

exponent part being too large.

16 sort mod

There are two generic routines in this modyle. The first is sortlist and sorts singly

dimensioned arrays of type character, integer, real, and double precision.

The second generic routine is called sort matrix and sorts columns (i.e., rearranges

first dimension indices) of two dimension arrays. The types sorted can again be

character, integer, real, and double precision.

16.1 sort list

16.1.1 Calling Sequence

CALL sort list(a,ncol,a gt b)

16.2 Function

A generic function that sorts a singly dimensioned array in ascending order according

to an optional user supplied routine defining the order. If the optional routine is

not supplied, the sort order is the natural one (alphabetic or numeric).

16.3 Arguments

• ¡type¿:: a(ncol) where a is the list to be sorted.

• INTEGER, INTENT(IN):: ncol The dimension (size) of a.

• logical, optional:: a gt b. If present, a logical function

logical function a gt b

that returns .TRUE. if column a is greater than column b in the desired sort

27

order. The interface is:

FUNCTION a gt b(a,b)

where a and b are elements of a.

16.4 sort matrix

16.5 Calling Sequence

CALL sort matrix(a,ncol,a gt b,nrowus,nrowdim,irow)

16.6 Arguments

• ¡type¿:: a(ncol,nrowdim) where a is the list to be sorted.

• INTEGER, INTENT(IN):: ncol The column dimension of a.

• logical, optional:: a gt b. If present, a logical function

logical function a gt b

that returns .TRUE. if column a is greater than column b in the desired sort

order. The interface is:

FUNCTION a gt b(a,b)

where a and b are elements of a.

The argument irow is passed from the call to sort matrix and may be used

as the user wishes. If there is no user supplied routine, the columns are sorted

in ascending order of the values in row irow.

• ¡type¿:: a(ncol,nrowdim) shows the dimension of matrix a where a is the

array to be sorted and ¡type¿ is one of real (single precision), double precision,

or character(len=*).

28

• logical, optional:: a gt b. If present, a logical function

logical function a gt b(a,b)

that returns .TRUE. if column a is greater than column b in the desired sort or-

der. The interface is: FUNCTION a gt b(a,b,irow)

The argument irow is passed from the call to sort matrix and may be used

as the user wishes. If there is no user supplied routine, the columns are sorted

in ascending order of the values in row irow.

• INTEGER, OPTIONAL, INTENT(IN):: nrowus The number of rows

of a that contain useful data. When the positions of two columns are swapped,

only rows (elements) 1:nrowus are actually swapped. If ommitted, the value

is set to nrowdm.

• INTEGER, INTENT(IN)::nrowdim The row dimension of a.

• INTEGER, INTENT(IN)::irow. An integer passed to a gt b.

17 Finding the Zero of a Monotone Function

There are four routines for finding a zero (or other specified value) of a monotone

function of one variable. Two routines are provided an initial guess as to the answer

and step up and down until the answer is bounded then tighten the interval. These

two routines have the word ‘step‘ as part of their name. The other two routines

are provided with a lower and upper bound on the answer and refine the interval.

These routines have the word ‘interval’ in their name.

One of the two step or interval routines uses reverse communication and the routine

name starts with ‘rc’. In these routines, there is a status variable one of whose values

indicates that a function evaluation is to be performed by the calling routine at a

value x supplied by the ‘rc’ routine. An argument, ‘fx’, should have its value set to

the value of the function and the ‘rc’ routine called again. Reverse communication

29

is useful in cases in which there is program data and structures needed to evaluate

the function and the code is cleaner if these items are not made visible at a level

within the zero-finder.

The routines whose name does not begin with ‘rc’ take the usual direct communica-

tion form. The name of the function to be evaluated is passed as an argument and

the routine takes care of calling it.

17.1 Reference

The algorithm is described in the article: Algorithm 748: Enclosing Zeros of Con-

tinuous Functions, by G. E. Alefeld, F. A. Potra, YiXun Shi, ACM Transactions

on Mathematical Software, Vol. 21, No. 3, Sep. 1995 pages 327-344 and code from

this article is used here. The packaging has been changed from that in the article.

17.1.1 Setting Values for the Zero-Finder Routines.

A call to set zero finder is required before invoking any of the specific routines. This

routine sets convergence and step-size criteria for the zero-finding routines. Note

that all arguments are optional and take default values if not set by the calling

routine. Thus the call to set zero finder without any arguments is legal although

rarely done. Usually, at least the bounds of the search are particular to the problem

at hand.

CALL set_zero_finder(low_limit,hi_limit,abs_tol,rel_tol, &

abs_step,rel_step,step_multiplier,local)

17.2 Arguments

• DOUBLE PRECISION, INTENT(IN), OPTIONAL:: low limit, hi limit

The least and greatest value of x to be searched for a zero of f(x). DEFAULT

VALUEX: -1.0E35 and 1.0E35.

30

• DOUBLE PRECISION, INTENT(IN), OPTIONAL:: abs tol, rel tol

DEFAULT VALUES for both is 1.0E-6.

The search for a value, x, producing a 0 of f(x) is terminated when x is bounded in

a region of length less than or equal to tol = MAX(abstol, reltol ∗ x).

• DOUBLE PRECISION, INTENT(IN), OPTIONAL:: abs step, rel step

The largest value of x to be searched for a zero of f(x). DEFAULT VALUES:

1.0E-4 and 1 respectively.

• DOUBLE PRECISION, INTENT(IN), OPTIONAL:: step multiplier

DEFAULT VALUE: 2/

In the ‘step’ routines, x is set to the initial guess and the initial step size is set to

MAX(rel step ∗ x, abs step)

.

If the previous step fails to bound a zero, then the step size is multiplied by

step multiplier and another step is taken.

• TYPE zf locals:: local. A structure used to hold all local variables of the

zero-finding routines – thus the routines are re-entrant – can be called from

different places in the code without one call interferring with another. The

type, zf locals is defined in zero finder mod. A calling program should USE

this module and declare some variable to be of this type. That variable can

then be used as a value for local. DEFAULT: there is a default structure that

is used if the caller does not specify his own. In this case, the code is not

reentrant.

17.2.1 The Step Routines

CALL step zf(f,y,answer,status,local)

CALL rc step zf(status,x,fx,local)

31

17.2.2 Arguments

• f The function of which the zero is sought is f(x)−y = 0. Here is the definition

of the argument f .

INTERFACE DOUBLE PRECISION FUNCTION f(x) DOUBLE PRECI-

SION, INTENT(IN):: x END INTERFACE

• DOUBLE PRECISION, INTENT(IN):: y The function of which the

zero is sought is f(x)− y = 0.

• DOUBLE PRECISION, INTENT(INOUT):: answer. On input. the

initial guess as to x such that f(x) − y = 0. On output if status==0, the

answer obtained by the routine.

• INTEGER, INTENT(INOUT):: status. On input, status should be set

to 0 to indicate the beginning of a new problem. On output, status==0 if an

answer has been successfully found.

For rc step zf, status can be returned with a value of 1. That indicates that the

calling program whould evaluate f at x and place the result in the argument

fx then call rc step zf again (without changing the value of status).

A return value that is not 0 or 1 indicates that an error occurred in the zero-

finding process.

• TYPE zf locals:: local. This should be the same variable passed to set zero finder.

18 Finding a Maximum of a Function of a Single

Variable

Two different packaging of one method are provided. The routine fun max uses

direct communication with the function to be maximized passed to the routine. The

32

other routine rc fun max uses reverse communication with the calling program.

When the value of the argument status is returned as one, the routine wants the

function evaluated at the value of the argument x and the result returned in the

argument fx on a subsequent call to rc fun max.

18.0.3 Setting Values for the Function Maximization Routines.

A call to set fun max is required before invoking any of the specific routines. This

routine sets convergence criteria and optionally local variables for the function max-

imization routines. Note that all arguments are optional and take default values

if not set by the calling routine. Thus the call to set fun max without any argu-

ments is legal although rarely done. Usually, at least the bounds of the search are

particular to the problem at hand.

CALL set_fun_max(low_limit,hi_limit,abs_tol,rel_tol,local)

18.1 Arguments

• DOUBLE PRECISION, INTENT(IN), OPTIONAL:: low limit, hi limit

The least and greatest value of x to be searched for a maximum of f(x). DE-

FAULT VALUEX: -1.0E35 and 1.0E35.

• DOUBLE PRECISION, INTENT(IN), OPTIONAL:: abs tol, rel tol

DEFAULT VALUES for both is 1.0E-6.

The search for a value, x, producing a 0 of f(x) is terminated when x is bounded in

a region of length less than or equal to tol = MAX(abstol, rel tol ∗ x).

• TYPE fm locals:: local. A structure used to hold all local variables of the

function maximization routines – thus the routines are re-entrant – can be

called from different places in the code without one call interferring with an-

other (a property called re-entrant code). The type, fm locals is defined in

33

max fun mod. A calling program should USE this module and declare some

variable to be of this type. That variable can then be used as a value for

local. DEFAULT: there is a default structure that is used if the caller does

not specify his own. In this case, the code is not reentrant.

18.1.1 The maximization routines

CALL fun max(f,answer,local)

CALL rc fun max(status,x,fx,local)

18.1.2 Arguments

• f. The function of which the maximumizer is sought. Here is the definition of

the argument f

INTERFACE

DOUBLE PRECISION FUNCTION f(x)

DOUBLE PRECISION, INTENT(IN):: x

END INTERFACE

• DOUBLE PRECISION, INTENT(OUT):: answer. The value of x that

yields approximately a local maximum of f(x) in the interval [low limit, high limit].

• TYPE (fm locals), OPTIONAL :: local. The same local argument as

in the corresponding call to set fun max.

• DOUBLE PRECISION, INTENT(OUT):: x. If status is 1, the calling

program should evaluate f(x) and return this value in argument fx upon a

subsequent call to rc fun max.

• DOUBLE PRECISION, INTENT(IN):: fx. The value of f(x) returned

by the calling program.

34

• INTEGER, INTENT(INOUT):: status.On input, status should be set

to 0 to indicate the beginning of a new problem. On output, status is set to

zero if an answer has been successfully found.

For rc fun max, status can be returned with a value of 1. That indicates

that the calling program whould evaluate f at x and place the result in the

argument fx then call rc fun max again (without changing the value of status).

A return value that is not 0 or 1 indicates that an error occurred in the zero-

finding process.

35

