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Abstract

This report examines in detail a family of efficacy-toxicity trade-off

functions simpler and more general than those originally proposed in [1].

The new trade-off functions are based on distance in Lp norm to the

ideal point and were first presented in [2]. We define and illustrate these

functions and demonstrate how to compute their parameters based on

elicited values.

1 Desirability trade-off functions

Let x and y represent posterior mean probabilities of efficacy and response

respectively. A desirability trade-off function is a function u(x, y) such that

u(x, y) > u(x′, y′) if and only if a treatment with probabilities (x, y) is more

desirable than a treatment with probabilities (x′, y′). It follows that u must be

an increasing function of x and a decreasing function of y.

The efficacy-toxicity tradeoff function given in [1] was constructed by first
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identifying a reference contour of the form

y = a +
b

x
+

c

x2
(1)

where x and y represent the posterior mean probabilities of efficacy and toxicity

respectively. Then a family of contours was defined by translating the reference

contour along the diagonal connecting (0, 1) and (1, 0). This approach had two

shortcomings. First, the inverse quadratic form of equation (1) lacks flexibility.

Second, there is no simple expression for the desirability trade-off for a given

(x, y) point.

We construct a new family of desirability functions as follows. Let x∗ and

y∗ be elicited points such that (x∗, 0) and (1, y∗) have equal desirability. For

each p > 0, we can define the desirability of a response-toxicity pair (x, y) as

1− r where (
x− 1
x∗ − 1

)p

+
(

y

y∗

)p

= rp,

i.e., the desirability of a point (x, y) is

1−
((

1− x

1− x∗

)p

+
(

y

y∗

)p)1/p

. (2)

Here r is the distance to the ideal point (1, 0) in Lp norm, with the axes

scaled by x∗ and y∗. If p < 1 the contours are concave. If p = 1 the contours

are straight lines. If p = 2 the contours are ellipses. As p → ∞ the contours

approach rectangles.

The EffTox software (see [4]) used the the inverse quadratic method for

defining trade-off contours up through version 2.8. Version 2.9 uses the Lp

norm method described here.

2 Bivariate binary model

In [1], two probability models are given: one for bivariate binary outcomes, and

one for trinary outcomes. In this section, we focus on the simpler bivariate

binary model.
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Figure 1: Curves for r = 1, x∗ = y∗ = 1/2 and p = 1/4, 1/2, 1, 2, and 4.

In the EffTox software (see [4]), desirability trade-offs are specified by giving

three points: (x∗, 0), (x1, y1), and (1, y∗). We require

0 < x∗ < x1 < 1

and

0 < y1 < y∗ < 1.

The point (x∗, 0) represents acceptable response probability if toxicity were im-

possible. The point (1, y∗) represents acceptable toxicity if efficacy were certain.

These two points determine where the contour {(x, y) : desirability = 0} inter-

cepts the x and y axes.

We may solve for p so that the zero desirability contour goes through the

point (x1, y1). To see this, define α = (1 − x1)/(1 − x∗) and β = y1/y∗. Note

that 0 < α, β < 1. Define

f(p) ≡ αp + βp

3



0 0.2 0.4 0.6 0.8 1

0

 0.2

0.4

0.6

0.8

1

Figure 2: Convex contours filling the unit square for x∗ = 0.3, y∗ = 0.4, and

p = 1.5.
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Figure 3: Concave contours filling the unit square for x∗ = 0.4, y∗ = 0.6, and

p = 0.7.
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and solve for p such that f(p) = 1. The function f(p) is monotone decreasing

and continuous on [0,∞). We have f(0) = 2 and limp→∞ f(p) = 0 and so there

exists a unique solution to f(p) = 1.

Note the Lp contours always fit the three elicited points exactly. The in-

verse quadratic contours did not; the method solved for the parameters that

minimized the error in the fit

3 Trinary trade-offs

The trinary model allows three outcomes: efficacy, toxicity, or neither. The

space of probabilities to consider is a triangle rather than a square: since efficacy

and toxicity are mutually exclusive under this model, we must have x + y ≤ 1.

Figure 4: Efficacy-toxicity trade-offs for trinary model
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As before, we define the desirability of a point (x, y) as the Lp distance to

the ideal point (0, 1), given by equation (2). For convenience, we define our

desirability functions on the entire unit square, even though points above the

diagonal line x + y = 1 no longer represent meaningful probabilities.

We determine the parameters for our desirability function from three elicited

points of equal desirability as before. However, now the three points are (x∗, 0),

(x1, y1), and (x2, y2) where (x2, y2) is on the hypotenuse of our probability

triangle, i.e. x2 + y2 = 1. We still define our desirability in terms of equation

(2) which involves y∗. Now y∗ is an analytical parameter we solve for rather

than a meaningful probability in our model. We will show how to find y∗ and

p so that the three elicited points have equal desirability.

Lemma 1 Let α, β, γ, and δ satisfy

α > γ, δ > β > 0.

Then there is a p > 0 such that

αp + βp = γp + δp (3)

provided α < γδ.

Proof Without loss of generality, we may assume β = 1. Otherwise, redefine

α, γ, and δ to be their former values divided by β. Define

g(p) = αp + 1− γp − δp

for p ≥ 0. Note that limp→∞ g(p) = ∞. If g is ever negative, g must be zero

somewhere and hence equation (3) has a solution.

Taking the derivative from the right,

g′(0) = log(α)− log(γ)− log(δ).

If α < γδ, g′(0) < 0 and g(p) must be negative for sufficiently small positive

values of p since g(0) = 0. ♦
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Claim 1 If

0 < x∗ < x1 < x2 < 1,

0 < y1 < y2,

and

x2 + y2 = 1

then there exist p > 0 and y∗ > y2 such that the curve(
x− 1
x∗ − 1

)p

+
(

y

y∗

)p

= 1

passes through the three points (x∗, 0), (x1, y1), and (x2, y2).

Proof Such p and y∗ exist if we can solve(
1− x1

1− x∗

)p

+
(

y1

y∗

)
=

(
1− x2

1− x∗

)p

+
(

y2

y∗

)
= 1.

Let a = 1− x∗, b = 1− x1, c = 1− x2 = y2, and d = y1. Then our problem

becomes solving (
b

a

)p

+
(

d

y∗

)p

=
( c

a

)p

+
(

c

y∗

)p

= 1

or (
1
y∗

)p

=
(

1
d

)p

−
(

b

ad

)p

=
(

1
c

)p

−
(

1
a

)p

.

This will follow if we can solve

(ac)p + (cd)p = (ad)p + (bc)p.

The order assumptions on the x’s and y’s imply

a > b > c > d

and thus

ac > ad, bc > dc.
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The lemma above then says we can indeed find the value of p we’re looking for.

Then knowing p we can solve(
1
y∗

)p

=
(

1
d

)p

−
(

b

ad

)p

for y∗. ♦
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