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Summary. Increasingly, scientific studies yield functional data, in which the ideal units of obser-
vation are curves and the observed data consist of sets of curves that are sampled on a fine grid.
We present new methodology that generalizes the linear mixed model to the functional mixed
model framework, with model fitting done by using a Bayesian wavelet-based approach. This
method is flexible, allowing functions of arbitrary form and the full range of fixed effects structures
and between-curve covariance structures that are available in the mixed model framework. It
yields nonparametric estimates of the fixed and random-effects functions as well as the various
between-curve and within-curve covariance matrices. The functional fixed effects are adaptively
regularized as a result of the non-linear shrinkage prior that is imposed on the fixed effects’
wavelet coefficients, and the random-effect functions experience a form of adaptive regulari-
zation because of the separately estimated variance components for each wavelet coefficient.
Because we have posterior samples for all model quantities, we can perform pointwise or joint
Bayesian inference or prediction on the quantities of the model. The adaptiveness of the method
makes it especially appropriate for modelling irregular functional data that are characterized by
numerous local features like peaks.

Keywords: Bayesian methods; Functional data analysis; Mixed models; Model averaging;
Nonparametric regression; Proteomics; Wavelets

1. Introduction

Technological innovations in science and medicine have resulted in a growing number of scien-
tific studies that yield functional data. Here, we consider data to be functional if

(a) the ideal units of observation are curves and
(b) the observed data consist of sets of curves sampled on a fine grid.

Ramsay and Silverman (1997) coined ‘functional data analysis’ as an inclusive term for the anal-
ysis of data for which the ideal units are curves. They stated that the common thread uniting
these methods is that they must deal with both replication, or combining information across N
curves, and regularity, or exploiting the smoothness to borrow strength between the measure-
ments within a curve. The key challenge in functional data analysis is to find effective ways to
deal with both of these issues simultancously.

Much of the existing functional data analysis literature deals with exploratory analyses, and
more work developing methodology to perform inference is needed. The complexity and high
dimensionality of these data make them challenging to model, since it is difficult to construct
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models that are reasonably flexible, yet feasible to fit. When the observed functions are well
represented by simple parametric forms, parametric mixed models (Laird and Ware, 1982) can
be used to model the functions (see Verbeke and Molenberghs (2000)). When simple parametric
forms are insufficient, however, nonparametric approaches allowing arbitrary functional forms
must be considered. There are numerous papers in the recent literature applying kernels or fixed
knot splines to this problem of modelling replicated functional data (e.g. Rice and Silverman
(1991), Shi et al. (1996), Zhang et al. (1998), Wang (1998), Staniswallis and Lee (1998) Brum-
back and Rice (1998), Rice and Wu (2001), Wu and Zhang (2002), Guo (2002), Liang et al.
(2003) and Wu and Liang (2004)). Some of these models are very flexible, with many allowing
different fixed effect functions of arbitrary form and some also allowing random-effect functions
to be of arbitrary form. Among the most flexible of these is that of Guo (2002), who introduced
a functional mixed model allowing functional fixed and random-effect functions of arbitrary
form, with the modelling done by using smoothing splines. All of these approaches are based
on smoothing methods using global bandwidths and penalties, so they are not well suited for
modelling irregular functional data that are characterized by spatial heterogeneity and local
features like peaks.

This type of functional data is frequently encountered in scientific research, e.g. in biomarker
assessments on a spatial axis on colonic crypts (Grambsch et al., 1995; Morris et al., 2003a), in
measurements of activity levels by using accelerometers (Gortmaker et al., 1999) and mass spec-
trometry proteomics (Morris et al., 2005). Our main focus in this paper is modelling functions
of this type. In existing literature, data like these are successfully modelled in the single-function
setting by using kernels with local bandwidths or splines with free knots or adaptive penal-
ties. However, it is not straightforward to generalize these approaches to the multiple-function
setting, since the positions of the local features may differ across curves. It is possible for the
mean functions to be spiky but the curve-to-curve deviations smooth, the mean functions to
be smooth but the curve-to-curve deviations spiky, or for both the mean functions and the
curve-to-curve deviations to be spiky. This requires flexible and adaptive modelling of both the
mean and the covariance structure of the data.

Wavelet regression is an alternative method that can effectively model spatially heteroge-
neous data in the single-function setting (e.g. Donoho and Johnstone (1995)). Morris et al.
(2003a) extended these ideas to a specific multiple-function setting—hierarchical functional
data—which consists of functions observed in a strictly nested design. The fully Bayesian mod-
elling approach yielded adaptively regularized estimates of the mean functions in the model,
estimates of random-effect functions and posterior samples which could be used for Bayesian
inference. However, the method that was presented in Morris et al. (2003a) has limitations that
prevent its more general use. It can model only nested designs and hence cannot be used to
model functional effects for continuous covariates, functional main and interaction effects for
crossed factors, and cannot jointly model the effects of multiple covariates. Also, it cannot han-
dle other between-curve correlation structures, such as serial correlation that might occur in
functions that are sampled sequentially over time. Further, Morris et al. (2003a) made restrictive
assumptions on the curve-to-curve variation that do not accommodate non-stationarities that
are commonly encountered in these types of functional data, such as different variances and
different degrees of smoothness at different locations in the curve-to-curve deviations (see Fig. 1
in Section 4.2). Finally, Morris et al. (2003a) did not provide general use code that could be
used to analyse other data sets.

In this paper, we develop a unified Bayesian wavelet-based approach for the much more gen-
eral functional mixed models framework. This framework accommodates any number of fixed
and random-effect functions of arbitrary form, so it can be used for the broad range of mean
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and between-curve correlation structures that are available in the mixed model setting. The
random-effect distributions are allowed to vary over strata, allowing different groups of curves
to differ with respect to both their mean functions and covariance surfaces. We also make much
less restrictive assumptions on the form of the curve-to-curve variability that accommodate
important types of non-stationarity and result in more adaptively regularized representations
of the random-effect functions. As in Morris ef al. (2003a), we obtain posterior samples of all
model quantities, which can be used to perform any desired Bayesian inference. We also pre-
sent a completely data-based method for selecting the regularization parameters of the method,
which allows the procedure to be applied without any subjective prior elicitation, if desired,
and these regularization parameters are allowed to differ across fixed effect functions. The addi-
tional flexibilities that we have built into the method that is presented in this paper has led to
increased computational challenges, but we have tackled these and developed general use code
for implementing the method that is sufficiently efficient to handle extremely large data sets. We
make this code freely available on the Web (http://biostatistics.mdanderson.org/
Morris/papers.html), so researchers need not write their own code to implement our
method.

The remainder of the paper is organized as follows. In Section 2, we introduce wavelets and
wavelet regression. In Section 3, we describe our functional mixed model framework. In Section
4, we describe the wavelet-based functional mixed models methodology, presenting the wavelet
space model, describing the covariance assumptions that we make and specifying prior distri-
butions. In Section 5, we describe the Markov chain Monte Carlo (MCMC) procedure that
we use to obtain posterior samples of our model quantities and explain how we use these for
inference. In Section 6, we apply the method to an example functional data set and, in Section 7,
we present a discussion of the method. Technical details and derivations are in Appendix A.

2. Wavelets and wavelet regression

Wavelets are families of orthonormal basis functions that can be used to represent other func-
tions parsimoniously. For example, in LZ(31), an orthogonal wavelet basis is obtained by dilating
and translating a mother wavelet 1) as

D) =224 2I1— k)
with j and k integers. A function g can then be represented by the wavelet series
g = > diu®,
J.ke

with wavelet coefficients

d,/k=/9(l) Y () de

describing features of the function g at the spatial locations indexed by k and frequencies indexed
by j. In this way, the wavelet decomposition provides a location and scale decomposition of the
function.

Lety=(y1,...,yr) be a row vector containing values of a function that is taken at 7 equally
spaced points. A fast algorithm, the discrete wavelet transform (DWT), exists for decomposing
y into a set of T wavelet and scaling coefficients (Mallat, 1989). This transform requires only
O(T) operations when T is a power of 2. The DWT can also be represented as matrix multipli-
cation by an orthogonal matrix W = (W, W}, ..., W), V}) where J is the coarsest level of the
transform. A DWT applied to the vector y of observations d =yW’ decomposes the data into
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sets of wavelet and scaling coefficients d = (dy,dp,...,d;,c;), where d; = ij’- are the wavelet
coefficients at level or scale j and ¢; =yV; are the scaling coefficients. For simplicity, we refer
to the entire set of wavelet and scaling coefficients d as simply the wavelet coefficients. Each
wavelet level j contains K ; coefficients. A similar algorithm for the inverse reconstruction, the
inverse discrete wavelet transform (IDWT), also exists.

Wavelet regression is a nonparametric regression technique that is useful for modelling func-
tional data that are spiky or otherwise characterized by local features. Suppose that we
observe a response vector y, represented by a row vector of length 7 on an equally spaced
grid t and assumed to be some unspecified function of ¢ plus white noise, i.e. y = g(t) + &, with
e ~MVN(0, 02 I7). Wavelet regression follows three steps. First, the data are projected into
the wavelet space by using the DWT. The corresponding wavelet space model is d =6 + *,
where d =yW’ are the empirical wavelet coefficients, @ = g(t)W’ are the true function’s wavelet
coefficients and e* =e W' ~ MVN(O0, 03 I7) is the noise in the wavelet space.

Since the wavelet transform tends to distribute white noise equally among all wavelet coeffi-
cients but concentrates the signal on a small subset, most wavelet coefficients will tend to be
small and to consist almost entirely of noise, with the remaining few wavelet coefficients being
large in magnitude and containing primarily signal. Thus, we can denoise the signal and regu-
larize the observed function by taking the smallest wavelet coefficients and thresholding them
or shrinking them strongly towards zero. This is done either by using thresholding rules (e.g.
Donoho and Johnstone (1995)) or by placing a mean 0 shrinkage prior on the true wavelet
coefficients (e.g. Abramovich et al. (1998)). An effective prior in this context should give rise
to a non-linear shrinkage profile, so that smaller coefficients are strongly shrunken whereas
larger ones are left largely unaffected. This thresholding or shrinkage of the wavelet coefficients
constitutes the second step of wavelet regression. Third, the thresholded or shrunken estimators
of the true wavelet coefficients 8 are transformed back to the data space by using the IDWT,
yielding a nonparametric estimator of the function. This procedure accomplishes adaptive reg-
ularization, meaning that the functional estimates are denoised or regularized in a way that
tends to retain dominant local features in the function. With the exception of Morris et al.
(2003a), previous literature on wavelet regression for functional responses has focused on the
single-function setting.

3. Functional mixed model

Here we introduce the functional mixed model framework on which we base our methodology.
This framework represents an extension of Laird and Ware (1982) to functional data, where the
forms of the fixed and random-effect functions are left completely unspecified. Other researchers
(e.g. Shi et al. (1996), Brumback and Rice (1998), Rice and Wu (2001), Wu and Zhang (2002),
Guo (2002) and Wu and Liang (2004)) have worked with similar models, although none have
made the same modelling assumptions that we describe here.

Suppose that we observe a sample of N curves Y;(f), i=1,..., N, on a compact set 7, which
is assumed without a loss of generality to be [0,1]. Our functional mixed model is given by

YO =XB®H+ZU®+E®, (D

where Y(©) = (Y1(9), ..., Yn(2)) is a vector of observed functions, ‘stacked’ as rows. Here, B(r) =
(B1(®),...,B,(1) is a vector of fixed effect functions with corresponding N x p design matrix
X, U(t)=U(),...,Un() is a vector of random-effect functions with corresponding N x m
design matrix Z and E(¢) = (E|(?), ..., EN(f))’ is a vector of functions representing the residual
€Iror Processes.
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Definition 1. A set of N stacked functions, A(¢), all defined on the same compact set 7, is a
realization from a multivariate Gaussian process with N x N between-row covariance matrix A
and within-function covariance surface ¥ € 7 x 7, denoted A(t) ~ MGP(A, YD), if the rows of
A~1/2 A(7) are independent mean 0 Gaussian processes with covariance surface (11, ), where
A~1/2 s the inverse matrix square root of A. This assumption implies that the covariance between
A;i(t1) and Ay (p) is given by A;» X(¢1, ). This distribution is the functional generalization of
the matrix normal distribution (see Dawid (1981)). Note that a scalar identifiability condition
must be set on either A or X, since letting A=A/c and ¥ =¥ % ¢ for some constant ¢ > 0 yields
the same likelihood. For example, we can set Aj; =1.

The set of random-effect functions U(z) is assumed to be a realization from a multivari-
ate Gaussian process with m x m between-function covariance matrix P and within-function
covariance surface Q(t1,1), denoted by U(t) ~ MGP(P, Q). The residual errors are assumed
to follow E() ~ MGP(R, S), which is independent of U(r).

This model is very general and includes many other models that are commonly used for func-
tional data as special cases. For example, it reduces to a simple linear mixed model when the
functional effects are represented by parametric linear functions. When N =1, the model sim-
plifies to a form in which traditional smoothing spline and wavelet regression models for single
functions can be represented. If we omit the random effects and assume a factorial structure on
the fixed effects, we obtain functional analysis-of-variance models. Model (1) also includes the
hierarchical functional model that was presented by Morris ez al. (2003a) as a special case.

This proposed model is very flexible. The fixed effects can be mean functions, functional main
effects, functional interactions, functional linear coefficients for continuous covariates, interac-
tions of functional coefficients with other effects or any combination of these. The design matrix
Z and between-curve correlation matrices P and R can be chosen to accommodate a myriad
of different covariance structures between curves that may be suggested by the experimental
design. These include simple random-effects, in which case P = I, as well as structures for func-
tional data from nested designs, split-plot designs, subsampling designs and designs involving
repeated functions over time. The random-effect portion of the model may be partitioned into

H
ZUW =3 ZpnUs(0)
=l

with Uy, (1) ~ MGP(Py, Qp), e.g. to allow multiple hierarchical levels of random effects or to
allow different random-effects distributions for different strata.

This model is similar to the functional mixed model in Guo (2002), with a couple of key
differences. Guo (2002) assumed independent random-effect functions (P = R =1 in our frame-
work), whereas our model, by introducing P and R, can accommodate correlation across the
functions. Also, Guo (2002) assumed a structure on Q that is different from what we do here. For
each level of random effects 2, Guo assumed that Q; = Lj, +X/\;, where L, = oflM’DM is the
covariance that is induced by random intercept and linear terms whose design matrix is M, D is
a structured 2 x 2 covariance matrix (which was assumed diagonal in Guo’s example) and o7 is
a variance component that is estimated from the data. The parameter ) is a scalar smoothing
parameter that is estimated from the data, and the correlation matrix X is fixed on the basis of
the reproducing kernel for the chosen spline basis. Our assumptions on Q are described later in
Section 4.2.

Of course, we cannot directly fit model (1), since in practice we observe only samples of the
continuous curves on some discrete grid. A discrete version of this model is given below, assum-
ing that all observed functions are sampled on a common equally spaced grid t=(;...17) .
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Recall that, by our definition of functional data (sampled on a very fine grid), this assumption is
not especially restrictive, since, if the grid is sufficiently fine, interpolation can be used to obtain
a common grid without substantively changing the observed data. The model is

Y=XB+ZU+E, 2

where Y is an N x T matrix of observed curves on the grid t, Bis a p x T matrix of fixed effects,
U is an m x T matrix of random effects and E is an N x T matrix of residual errors. As defined
above, X is an N x p matrix and Z is an N x m matrix, and the two are the design matrices for
the fixed and random-effect functions respectively. Following the notation of Dawid (1981), U
follows a matrix normal distribution with m x m between-row covariance matrix P and T x T
between-column covariance matrix Q, which we denote by U ~ MN (P, Q). Another way to
represent this structure is to say that vec(U") ~ MVN(0, P ® Q), where vec(A) is the vectorized
version of a matrix A obtained by stacking the columns and ‘®’ is the Kronecker product,
both defined as in Harville (1997). This assumption implies that the covariance between U, ; and
Uy j is Piy Q jjr. The residual error matrix E is assumed to be MA/ (R, S). The within-random-
effect curve covariance surface Q and residual error covariance surface S are T x T covariance
matrices that are discrete approximations of the corresponding covariance surfaces in 7 x 7.

4. Wavelet-based functional mixed model

Having presented a conceptual functional mixed model for correlated functional data, we now
describe our nonparametric wavelet-based approach to fit it. Our approach consists of three
basic steps.

(a) Compute the empirical wavelet coefficients for each observed curve, which we think of as
projecting the observed curves from the data space to the wavelet space.

(b) Use Markov chain Monte Carlo methods to obtain posterior samples for quantities in
the wavelet space version of the functional mixed model. Projecting to the wavelet space
allows modelling to be done in a more parsimonious and computationally efficient man-
ner and causes regularization to be performed as a natural consequence of the modelling
through shrinkage priors placed on the fixed effects portion of the model.

(c) Transform the wavelet space quantities back to the data space, yielding posterior sam-
ples of all quantities in the data space model, which can be used to perform Bayesian
estimation, inference and prediction.

The first step involves decomposing each observed function, sampled on an equally spaced
grid of size T, into a set of T wavelet coefficients. This projection from the data space into the
wavelet space is done by applying the DWT to each row of Y and can be conceptualized as
the right matrix multiplication D =YW’, where W is the orthogonal DWT matrix. The N x T
matrix D contains the empirical wavelet coefficients for all observed curves, with row i contain-
ing wavelet and scaling coefficients for curve i and the columns double indexed by the scale j
and location k, with j=1,...,Jandk=1,...,K;.

4.1. Wavelet space model
Right matrix multiplication of both sides of model (2) by the DWT matrix W’ yields a wavelet
space version of the model:

D=XB*+ ZU* + E*, 3)
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where X and Z are the design matrices as in model (2), B* = BW’ is a p x T matrix whose rows
contain the wavelet coefficients for the p fixed effect functions on the grid, U* = UW' is an
m x T matrix whose rows contain the wavelet coefficients for the m random-effect functions and
E*=EW’isan N x T matrix consisting of the residual errors in the wavelet space. Like D, the
columns of B*, U* and E* are all double indexed by the wavelet coefficients’ scale j and location
k. The linearity of the DWT makes it easy to compute the induced distributional assumptions
of the random matrices in the wavelet space, U* ~ MN (P, 0*) and E* ~ MN (R, S*), where
O0*=WQW'’and S$* = WSW'. Note that the between-row covariance structure is retained when
projecting into the wavelet space; only the column covariance changes.

4.2. Covariance assumptions

Before we fit model (3), it is necessary to specify some structure on the various covariance matri-
ces since their large dimensions make it infeasible to estimate them in a completely unstructured
fashion. We model P and R by using parametrically structured covariance matrices as in linear
mixed models, which can be chosen on the basis of either the experimental design or an empiri-
cal investigation of the data. The vectors of the covariance parameters indexing matrices P and
R are denoted by Q2p and Qp respectively.

For Q and S, we propose a parsimonious structure in the wavelet space that yields a flexible
class of covariance surfaces in the data space. As is frequently done in wavelet regression, we
assume that the wavelet coefficients within a given curve are independent across j and k, making
Q* and S* diagonal. The heuristic justification that is frequently given for this assumption is
the whitening property of the wavelet transform, which is discussed in Johnstone and Silverman
(1997). The diagonal elements are allowed to vary across both wavelet scales j and locations %,
yielding Q* = diag(q;‘k) and $* = diag(s;‘.‘k). For convenience, we denote these sets of variance
components by 2o and €2 respectively.

This structure requires only 7 parameters instead of the T(7T + 1) /2 parameters that would
be required to estimate each of these matrices in an unstructured fashion, yet it is sufficiently
flexible to emulate a wide range of covariance structures that are commonly encountered in
functional data. For example, when 7 =256, only 256 parameters are required instead of the
32896 for the unstructured representation. Independence in the wavelet space does not imply
independence in the data space unless the variance components are identical across all wavelet
scales j and locations k, since heterogeneity in variances across wavelet coefficients at different
levels induces serial dependences in the data. In general, larger variances at low frequency scales
correspond to stronger serial correlations, and thus smoother functions.

Further, since the variance components are free to vary across both scale j and location
k, this structure accommodates non-stationarity, e.g. allowing the curve-to-curve variances
and the smoothness in the curve-to-curve deviations both to vary over ¢. These types of non-
stationarities are frequently encountered in complex functional data but cannot be accommo-
dated when the variance components are allowed to vary only over j (see Fig. 1). It is typical
in existing wavelet regression literature for the wavelet space variance components to vary over
Jj, but not k (e.g. Abramovich et al. (1998), Morris et al. (2003a), Abramovich and Angelini
(2003) and Antoniadis and Sapatinas (2004)). This may be a necessary practical restriction in
the single-function case, but not in the multiple-function case, since the replicate functions allow
the variance components to be estimable even when they also vary by k. To our knowledge, this
is the first paper allowing these variance components to depend on both j and k.

To illustrate the flexibility of these assumptions, we randomly generated 200 realizations
from a Gaussian process with mean p(f) and covariance S(¢1, ) on an equally spaced grid of
length 256 on (0, 1). From top to bottom, Fig. 1(a) contains the true mean function p(z), the true
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variance function v(r) = diag(S) and the true autocorrelation surface ps(t1, 1) = v 1/2Sv~1/2,
Figs 1(b) and 1(c) contain the posterior mean estimates of these quantities by using wavelet-
based methods. Both assume independence across wavelet coefficients, but Fig. 1(b) allows the
wavelet space variance components to vary across scale j and location &, and Fig. 1(c) allows
them to vary across j only, as assumed in Morris et al. (2003a) and other work involving wave-
let regression. The framework that is used in Fig. 1(b) is sufficiently flexible to pick up on the
non-stationary features of S, whereas Fig. 1(c) is not. Specifically, it can model the increasing
variance in ¢, the extra variance near the peak at 0.5, the different degrees of smoothness in the
region (0,0.4) and (0.6,1) and the extra autocorrelation from the peak at 0.5. Also note that it
appears to have done a marginally better job of denoising the estimate of the mean function.
These same principles apply to the covariance across random-effect functions.

Another advantage of this independence assumption is that it allows us to fit the wavelet space
model (3) one column (wavelet coefficient) at a time. This greatly simplifies the computational
procedure and allows much larger data sets to be fitted by using this method.

4.3. Adaptive regularization using a multiple-shrinkage prior
To obtain adaptively regularized representations of the fixed effect functions B; (), as is standard

in Bayesian implementations of wavelet regression, we place a mixture prior on B;“jk, the wavelet
coefficient at scale j and location k for fixed effect i:
B?f/k :’y;;kN(Oa Tijk) + _’7;}]()103 “)

%.”}k = Bernoulli(m; ),

where I is a point mass at zero and ~%, is an indicator of whether wavelet coefficient (j, k)
is ‘important’ for representing the signal for fixed effect function i. The hyperparameter m;; is
the prior probability that a wavelet coefficient at wavelet scale j is important for representing
the fixed effect function i, and 7; j is the prior variance of any important wavelet coefficient at
location k and level j for fixed effect i.

The quantities 7;; and 7; j; are regularization parameters. For example, smaller 7;; will result
in more attenuation in the features of fixed effect function i occurring at a frequency indicated
by scale j. By indexing these parameters by i and j, we allow different degrees of regularization
for different fixed effect functions and at different frequencies. See Morris et al. (2003a) for a
discussion of the intuition behind how this prior leads to adaptive regularization. It is possible to
elicit values for these regularization parameters, taking into account some of the considerations
that were discussed in Morris et al. (2003a) or Abramovich et al. (1998), or to estimate them
from the data by using an empirical Bayes procedure. Section 4.4 describes one such procedure.

In this modelling framework, the random-effect functions U;(¢) are also regularized as a result
of the mean 0 Gaussian distribution on their wavelet coefficients. Morris et al. (2003b) described
how the regularization of the random-effect functions in their wavelet-based hierarchical func-
tional model was governed by the relative sizes of corresponding variance components and
residual errors. The same principles also apply here, although here our regularization is more
adaptive than in Morris et al. (2003a) since we allow the wavelet space variance components
for both the random effects and the residual errors to depend on scale j and location k. To
explain, wavelet coefficients that are indexed by (j, k) that tend to be important for representing
even a small number of random-effect functions will have relatively large subject level variance
components g j. These large variances will lead to less shrinkage of these coefficients, and thus
the features that are represented by these coefficients will tend to be preserved in the regularized
random-effect function estimates. Wavelet coefficients that are unimportant for representing
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the random-effect functions will be close to 0, leading to small variance components, strong
shrinkage and regularization of the features corresponding to these coefficients.

This regularization is sufficiently adaptive to model very spiky random-effect functions,
as demonstrated in supplementary material that is available at http://biostatistics.
mdanderson.org/Morris/papers.html. A major advantage of our approach is that the
random-effect functions’ regularization parameters are simply the variance components of the
model, which are directly estimated from the data, and thus need not be arbitrarily chosen. Fur-
ther, in our Bayesian approach, the uncertainty of their estimation is automatically propagated
throughout any inference that is done.

It may be possible to obtain even more adaptively randomized random-effect functions by
assuming a mixture prior like equation (4) on the wavelet coefficients for the random-effect
functions. However, by doing so, we would lose some of the coherency that is evident in mod-
els (1)—(3), since the random-effect functions would no longer be Gaussian in the data space.
Further, we would not be able to marginalize over the random-effect functions in our model
fitting (see Section 5), which would increase the computational burden for implementing the
method. Since we are satisfied with the degree of adaptiveness that is afforded by our Gaussian
assumptions with variances depending on j and k, we do not further pursue this idea in this

paper.

4.4. Empirical Bayes method for selecting shrinkage hyperparameters

Here we present a data-based procedure for determining the shrinkage hyperparameters for
the fixed effect functions in the wavelet-based functional mixed model. We estimate these
hyperparameters by using maximum likelihood while conditioning on consistent estimates of
the variance components in the model. This method is an extension of the work of Clyde and
George (2000), which they later adapted to the hierarchical functional framework (Clyde and
George, 2003).

First we introduce some notation. Consider the quantities

o _ _ _ o
By mLE = {1 X (Zjx) X XS0 l(djk_X(—i)B(—i)jk,MLE)’ %)

Vi jk =Var(é?<jk,MLE)
={X/Zp X} (6)

where X; is the ith column of the design matrix and X (_;y is the design matrix with column i
omitted, and

Ejk=ZP(ﬂp)Z/*q7k+R(ﬂR)*s;’-‘k (N

is the marginal variance of d ;. Note that Bi*jk,MLE is the maximum likelihood estimator (MLE)
of B;"jk conditional on the covariance parameters and the other fixed effects and \/V; j is the

standard error of the MLE. Taking their ratio yields
Ak
Gijk = Bjje MLE/ v/ Vijks 8)

which can be thought of as a standardized score for the wavelet coefficient at scale j and location
k from fixed effect function i.

We assume that 7; 5 = V; % T;; for some parameters Y;;, allowing full flexibility in these regu-
larization parameters across different scales, but making the ratio of regularization parameters
within a given scale proportional to the size of the variance of the MLE for that coefficient. This
allows us to estimate Y;; from the data. Assuming knowledge of V; i, it can be shown that the
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likelihood for Y;; and m;; can be represented by

B Kj " Kj
I(Cij,mig) o (1+Tp) "=t/ eXp{_; > G/ (1 +Tij)}
=

K:

J %
) P (1 =y

k= 17, j )

On the basis of this likelihood, local maximum likelihood estimates of 7;; and Y;; can be
obtained by iterating through the following steps until convergence is achieved:

A¥ = Oijk
ik 14+ 0
R # 1 T;
O: = 1+1 1/2 ij .
ijk l—ﬂ'j( + lj) eXp 2Cz]k1+,rlj

l]_maX(O Z%chzjk/Z%]k >

A j

This procedure can be applied while conditioning on consistent estimators of the variance com-
ponents, ¢.g. method-of-moment estimators or MLEs, glvmg Vi jk of V; . Then the empirical
Bayes estimates of 7;; and 7; ;. are given by 7;; and V; Jk * T, ;j respectively.

5. Posterior sampling by using Markov chain Monte Carlo methods

After specifying diffuse proper priors for the variance components, we are left with a fully spec-
ified Bayesian model for the functional data. Since the posterior distributions of parameters are
not available in closed form, we use MCMC sampling to obtain posterior samples for all the
parameters in model (3). We work with the marginalized likelihood where the random effects
have been integrated out, which improves the mixing properties of the sampler over a naive
Gibbs sampler. We alternate between sampling the fixed effects B* and the covariance param-
eters ; then we later sample the random-effects U* whenever they are of interest. Following
are the details of the sampling procedure that we use.

(a) For each wavelet coefficient (j, k), sample fixed effect i from f(B k|d ks B* iy o Q), where
B( i jk is the set of all fixed effects coefficients at scale j and locatlon k except the ith. As
shown in Appendix A, this distribution is a mixture of a point mass at 0 and a normal
distribution, with the normal mixture proportion ¢; jx and the mean and variances of the
normal (i,  and v, jx respectively given by

ik =Pr(yiu = 1dj, B{_; ji, )

= Ojj/(Oiji+ 1), (10)

Oijx=mij/(1 —m;j)BF;,
BFij = (1+7ij6/ Vi) ™% exp{ 3 (14 Vije/Tij0) } (11)
pije= B ML (1 4+ Vije /i) (12)

vije = Vi (14 Vije/7ijs) " (13)
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where E;kjk’MLE, Vijk, Ljx and (i are defined as in equations (5)—(8) above. O;jx and
BF;jr have an interesting interpretation. They are the posterior odds and Bayes factor
respectively for deciding whether wavelet coefficient (j, k) is important for representing
function i, conditional on the covariance parameters €2 and other fixed effects. The pos-
terior means of the B;; will be Bayesian model-averaged estimators that have averaged
over models where B, j is either 0 or not. Alternatively, a soft thresholding approach
could be used whereby B; ik =0 if the estimated posterior probability that | B; x| >0 (i.e.
vijk =1) from the MCMC algorithm is less than some threshold

(b) For each wavelet coefficient (j, k), sample the elements g% i and s* i of ¢ and Qg by using
a random-walk Metropolis—Hastings step. The objectlve functlon is

P s, Bl Qp, Q) o< S| ™12 exp{—§ (djx — X BRY' S 3 (@ — XBE)} g, s%)-

We use an independent Gaussian density, truncated at zero and centred at the previ-
ous parameter values, as the proposal for each parameter. We automatically estimate
the proposal variance from the data by using estimates of the variance of the maximum
likelihood estimates. Wolfinger et al. (1994) provided details of how to compute maxi-
mum likelihood estimates and their standard errors in linear mixed models. The details
of the Metropolis—Hastings procedure are available at http://biostatistics.
mdanderson.org/Morris/papers.html.

(c) Sample the between-curve covariance parameters {2p and 2z by using a single random-
walk Metropolis—Hastings step. If the random-effects and residual errors are assumed to
be independent and homoscedastic across samples (P =1 and R=1I), then there are no
parameters to update in this step. The assumption of independence between the wavelet
coefficients allows the Metropolis—Hastings objective function to factor into the product
of independent pieces for each wavelet coefficient:

S, QrID, B*,Q0, Qs) o [T 1Z ] 7'/ exp{—5 (A — XBY)'S3 (djc— XBY)} f(Qp, Q)
J.k

where X is given by equation (7) above. The details of implementation are similar to
those for the previous step. Again, we use an independent truncated Gaussian distribu-
tion with mean at the previous parameter values for the proposal distribution, with the
proposal variance automatically determined from the data.
(d) Sample the random effects u% P for each (j, k) from their full condmonal fu b |d ]k, B* e ),
which is easily seen to be Gaussian distributed with mean {\I! + (g% * P) v } Iy~ P lle K
and variance { ! w T @ P)” =1 where W = {Z/(s*% T R) lZf

s i ={Z' (G« R Z} 1 Z/ (%« B~ — XBY).

If the random effects are not desired, we can omit this step and thus speed up the MCMC
algorithm, since the previous steps work with the marginalized likelihood.

Code for applying this method is available at http://biostatistics.mdanderson.
org/Morris/papers.html.

5.1. Bayesian inference and prediction

The MCMC algorithm that was described above yields posterior samples for all quantities in
the wavelet space mixed model (3). These posterior samples can then be projected back into
the data space by using the IDWT, yielding posterior samples of the quantities in model (2).
Specifically, posterior samples for each fixed effect function B;(f) on the grid t are obtained by
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applying the IDWT to each posterior sample of the corresponding vector of wavelet coefficients
Bf=(B}j,,..., Bi*JKJ), and similarly for the random-effect functions. Further, posterior sam-
ples of the covariance matrices Q and S are obtained by applying the two-dimensional IDWT
to the posterior samples of the diagonal matrices Q* and S*, following Vannucci and Corradi
(1999).

Given the posterior samples, we can then construct any Bayesian estimators and perform any
desired Bayesian inference. See Gelman et al. (2004) for an overview of Bayesian analysis and
inference, and a description of the types of inference that are possible given posterior samples.
For example, we can construct pointwise credible intervals for fixed effect functions or compute
posterior probabilities for any hypotheses of interest. These can involve any transformation or
combination of the parameters in the model. Since we have posterior samples for entire func-
tions, marginal inference can be done for single locations on the function or joint inference can
be done over regions of the function. It is also straightforward to compute posterior predictive
distributions f(Y*|Y) for a future observed curve Y* given data Y, since

f(Y*|Y)=/f(Y*|B, U, f(B,U,Q|Y)dBdAU dQ,

which can be estimated via Monte Carlo integration using the posterior samples as G~!x
Y, f(Y*|BY, U9, Q) where the superscript (g) indicates the posterior sample from iteration
g of the MCMC algorithm. This inference and prediction appropriately account for all sources
of variation in the model. For example, they do not condition on estimates of the variance
components as if they were known but automatically propagate the uncertainty of their estima-
tion throughout inference. This is one of the advantages of using a unified Bayesian modelling
approach.

6. Example

Nutrition researchers at Texas A&M University conducted a rat carcinogenesis experiment
to investigate whether the type of dietary fat (fish-oil or corn oil) plays a role in modulating
important colon cancer biomarkers during the initiation stage of carcinogenesis, the first hours
after exposure to a carcinogen. In this study, they fed 30 rats one of the two diets for 14 days,
exposed them to a carcinogen and then sacrificed them at one of five times after exposure to
the carcinogen (0, 3, 6, 9 or 12 h). They removed and dissected each rat’s colon and then used
immunohistochemical staining to obtain measurements of various cancer biomarkers, including
the deoxyribonucleic acid (DNA) adduct level, a measurement of the amount of DNA damage
occurring from the exposure to the carcinogen, O®-methylguanine-DNA methyltransferase
(MGMT), a DNA repair enzyme that repairs this carcinogen-induced damage, and apopto-
sis, the selective elimination of damaged cells.

They quantified each biomarker for a separate set of roughly 25 crypts in the distal region
of each rat’s colon. Crypts are finger-like structures extending into the colon wall in which all
colon cells reside. A cell’s relative depth within its crypt is related to its age and stage in the
cell cycle, so it is an important factor to consider when assessing biomarker modulation. Using
image analysis software, they quantified the MGMT levels on a fine grid along the side of each
selected crypt, resulting in an observed curve for each crypt containing the biomarker quanti-
fications as a function of relative depth within the crypt. The relative depth in the crypt was
coded such that an observation at the base of the crypt was relative cell position 0, whereas
an observation at the lumenal surface was relative cell position 1. Fig. 2 contains the observed
curves from two crypts from two rats. Note that these functions appear very irregular, with
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Fig. 2. Sample curves of MGMT intensity levels as a function of relative depth within the crypts: (a) fish-oil
diet 12 h, rat 1, crypt 1; (b) fish-oil diet 12 h, rat 1, crypt 2; (c) corn oil diet 12 h, rat 1, crypt 1; (d) corn oil diet
12 h, rat 1, crypt 2

many spikes presumably corresponding to local areas in the crypt with high biomarker levels
(Morris et al., 2003a), e.g. the nuclei of the cells. The full data set consists of 738 such observed
curves, each sampled on an equally spaced 256-unit grid.

The MGMT data were analysed by Morris et al. (2003a), and it was found that corn-oil-fed
rats had lower MGMT expression near the lumenal surface at 12 h after exposure to the car-
cinogen than did fish-oil-fed rats. Our goal here is to relate the levels of the other biomarkers
to the MGMT expression levels, and to see whether this 12 h-effect remains after adjusting for
these other biomarkers as covariates. For each rat, we obtained measurements of the continu-
ous covariates mean DNA adduct level and apoptotic index (the percentage of cells undergoing
apoptosis) across its crypts in the upper third compartment, i.e. the compartment that is closest
to the lumenal surface. We would like to assess whether there is a relationship between the
amount of DNA damage and/or the amount of apoptosis near the lumenal surface of the crypts
and the levels of MGMT, and whether these relationships depend on relative cell position
and/or diet. These covariates were not considered in Morris et al. (2003a) and could not be
accommodated by their hierarchical functional model.

Our design matrix X had p =14 columns, with the first 10 indicating the rat’s diet by time
group. Columns 11 and 12 contained the mean DNA adduct level in the upper third of the crypt
for rats fed the fish- and corn oil diets respectively. These columns were standardized to have
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mean 0 and standard deviation 1. Columns 13 and 14 contained the apoptotic index in the upper
third of the crypt for rats fed the fish- and corn oil diets respectively. To model the correlation
between crypts from the same rat, we included random-effect functions for each rat. The resid-
ual errors represented the sum of the crypt-to-crypt variability and any within-function noise.
We assumed that rats and crypts within rats were independent and identically distributed, so
we let P=R=1. We used the Daubechies wavelet with eight vanishing moments (Daubechies,
1992) at J =8 levels. Other wavelet bases yielded substantively equivalent results. After a burn-
in of 1000, we ran the MCMC algorithm for 20000 iterations, keeping every 10. The Metrop-
olis—Hastings acceptance probabilities for the variance components were all between 0.12
and 0.39. Trace plots of the model parameters are available at http://biostatistics.
mdanderson.org/Morris/papers.html andreveal that the MCMC algorithm converged
and mixed very well.

Fig. 3 contains the posterior mean functional coefficients corresponding to the DNA adduct
level and apoptotic index covariates for fish- and corn-oil-fed rats. The estimate for the DNA
adduct level top coefficient was negative near the lumenal surface for rats that were fed fish-oil
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Fig. 3. MGMT results: posterior mean and 95% pointwise posterior credible intervals for functional linear
coefficients (for the corresponding continuous covariates in a functional mixed model that also includes cat-
egorical effects for the 10 diet—time combinations and random-effect functions for each rat): (a) DNA adduct
level, top third of the crypt, fish-oil diet; (b) DNA adduct level, top third of the crypt, corn oil diet; (c) apoptotic
index, top third of the crypt, fish-oil diet; (d) apoptotic index, top third of the crypt, corn oil diet
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or corn oil, meaning that animals with high levels of DNA damage near the lumenal surface
tended also to have lower levels of MGMT near the lumenal surface. The posterior probabilities
that the coefficient at the top of the crypt was less than 0 were 0.947 and 0.989 for fish- and
corn oil diets respectively. This negative relationship extended to the middle of the crypts for
corn-oil-fed rats, but not for fish-oil-fed rats, for whom the estimate was positive. The posterior
probability that the fish-oil coefficient at the middle of the crypt (relative cell position 0.5) was
greater than that for the corn oil coefficient was 0.9965.

For fish-oil-fed rats, the apoptotic index top coefficient was positive throughout nearly the
entire crypt, with the coefficient increasing in a roughly linear fashion moving up the crypt. The
posterior probability that this coefficient was greater than 0 at the lumenal surface for fish- and
corn-oil-fed rats was greater than 0.9995 and 0.612 respectively, and the posterior probability
that the coefficient for fish-oil-fed rats was greater than that for corn-oil-fed rats was 0.9815.
The interpretation of these results is that the fish-oil-fed animals who had a large amount of
apoptosis near their lumenal surface also had high levels of the DNA repair enzyme MGMT
near their lumenal surface, meaning that the two major mechanisms for dealing with DNA
damage were correlated. This relationship was not so strong for corn-oil-fed animals.

With DNA adduct level and apoptotic index and their interactions with diet included in the
model, the difference between the fish-oil and corn oil diets at 12 h near the lumenal surface
that was found in Morris et al. (2003a) was no longer evident (the posterior probability that the
effect for fish-oil was greater than that for corn oil was only 0.674, whereas it was greater than
0.9995 without covariates in the model). One interpretation of this result is that the differences in
MGMT between diets at the lumenal surface may be explained by the previously observed DNA
adduct level and apoptosis effects (Hong et al., 2000), whereby rats on fish-oil diets had lower
DNA adduct levels and higher apoptotic rates at the lumen surface than rats fed corn oil diets.

7. Discussion

Functional data are increasingly encountered in scientific studies, and there is a need for sys-
tematic methods for analysing these complex and large data sets and extracting the meaningful
information that is contained inside them. In this paper, we have introduced a unified Bayesian
wavelet-based modelling approach for functional data that is a vast extension over the hierar-
chical functional method that was introduced by Morris et al. (2003a). Although applied to
just one example here, our approach is sufficiently flexible to be applied to a very broad range
of functional data sets and to address a large number of potential research questions. If we
substitute higher dimensional wavelet transforms for the one-dimensional transforms that are
described here, our methodology is immediately extendable to higher dimensional functional
data, e.g. image data.

The underlying functional mixed models framework is very flexible, allowing the same wide
range of mean and covariance structures as in mixed effects models, while allowing functional
fixed and random effects of unspecified form. We perform our modelling in the wavelet space,
which provides a natural mechanism for adaptive regularization using mixture prior distribu-
tions, and also allows us to model the high dimensional covariance matrices Q and S describing
the form of the curve-to-curve deviations in a parsimonious manner. As in much work in wavelet
regression, we assume independence in the wavelet space, but unlike existing work in wavelet
regression we allow the wavelet space variance components to vary across both scale j and
location k. This provides a large amount of flexibility, accommodating various types of non-
stationarity that is commonly encountered in functional data, including heteroscedasticity and
varying degrees of smoothness at different locations in the curve-to-curve deviations; see Fig. 1.
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This flexibility allows us to model many different types of functional data and also results in
more adaptive regularization in the representations of the fixed and random-effect functions.
This approach can effectively accommodate spiky fixed effect functions and/or spiky random-
effect functions. In our example, the fixed effect and rat level random-effect functions were
smooth, but the crypt level deviations were spiky.

After running an MCMC algorithm, we obtain posterior samples of the fixed and random-
effect functions and various covariance matrices in the model, which can be used to perform
any desired Bayesian estimation, inference or prediction. Credible intervals can be constructed
and posterior probabilities of hypotheses can be computed for any transformation or function
of the model parameters, e.g. averaging over different intervals or looking at specific locations
of interest. Also, predictive densities for future curves can be estimated. Although our method
is Bayesian, the only informative priors that we use in our analyses involve the shrinkage hyper-
parameters, which can be estimated from the data by using the empirical Bayes method that we
describe, if desired. Another advantage of the Bayesian approach is that there is a natural mech-
anism for handling measurement error or missingness, both in covariates and in the functional
responses, since the missing or error prone data can simply be treated as parameters that are
updated from their complete conditional distributions as part of the MCMC algorithm. Also,
the structure of our framework makes it possible to consider functional hypothesis testing using
Bayes factors or mixture priors with positive probabilities placed on zero functions. These ideas
require further development, however, so are beyond the scope of this paper and are topics of
future investigation.

There is some recent and on-going related work on functional analysis of variance using wave-
lets. Unlike here, the major focus in these papers is on developing frequentist functional hypoth-
esis tests. Fan and Lin (1998) presented methods for functional testing using wavelets, although
their framework did not include random effects. Abramovich and Angelini (2003) allowed
functional random effects but only dealt with one-way analysis-of-variance mean structures.
Antoniadis and Sapatinas (2004) also allowed functional random effects, and they described a
functional mixed modelling framework that is similar to model (1), but they did not accommo-
date correlated random-effect functions.

There are other important differences between our modelling framework and those which
were used in Fan and Lin (1998), Abramovich and Angelini (2003) and Antoniadis and
Sapatinas (2004). Whereas we let the wavelet space variance components depend on scale j
and location k, they only allowed them to depend on j, which places strong restrictions on
functional forms of the between-curve deviations (see Fig. 1), which we expect should affect
any subsequent inference. Also, since we specify diffuse proper priors for the wavelet space
variance components for the random effects and update them within the MCMC algorithm,
we estimate these parameters from the data and propagate the uncertainty of their estimation
throughout subsequent inference. These variance components both model the curve-to-curve
variability and serve as regularization parameters for the random-effect functions. In Antonia-
dis and Sapatinas (2004), the user simply fixes the relative sizes of these variance components
across different wavelet scales j and then only estimates a single scalar variance component
from the data. Abramovich and Angelini (2003) described a data-based method for estimating
them, but they condition on these estimates as though they were known, and thus the inference
that they describe does not account for their estimation error.

Antoniadis and Sapatinas (2004) and Abramovich and Angelini (2003) focused on functional
hypothesis testing for fixed effect functions and, in Antoniadis and Sapatinas (2004), random-
effect functions. This is clearly of interest in many contexts but is not the only relevant question
with functional data. For example, the primary interest in many applications is not simply test-
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ing whether the function is identically 0, but rather identifying specific regions or features of
the curves that differ from zero. No inferential procedures for these questions are described by
them. One example is mass spectrometry proteomics, where the functions are characterized by
many peaks corresponding to different proteins in the sample. The primary goal is not simply
to decide whether there are any systematic differences in the mean curves for different groups
of patients, but rather to identify which regions of the curves demonstrate differences. These
specific regions can subsequently be mapped to individual proteins that may serve as useful
biomarkers in medical applications.

We have developed easy-to-use code for implementing our method that we make freely
availableviahttp://biostatistics.mdanderson.org/Morris/papers.html.The
minimum information that a user needs to supply includes a matrix of observed functions Y, fixed
and random-design matrices X and Z, and a specification of the desired covariance structures
and wavelet bases to use. Method-of-moments and generalized least squares starting values,
vague proper priors on the variance components and empirical Bayes values for the hyper-
parameters are all automatically computed by the program and can be used, if desired. The
program also contains an automatic, data-based method for determining the proposal vari-
ances that are necessary for the Metropolis—Hastings steps that are used to sample the large
number of covariance parameters in the model. This method appears to work very well with
none of the fine tuning that is normally required when implementing random-walk Metropolis—
Hastings algorithms. This feature is key in making our method practically implementable for
high dimensional functional data.
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Appendix A: Conditional distribution for fixed effects

Here we show that the conditional distribution (B; ]k|djk, B* oo $D is a mixture of a point mass at zero
and a normal distribution, with normal mixing proportion a, & given by equation (10) and the mean and
variances of the normal y; % and v, given by equations (12) and (13) respectively.

Recall that, after integrating the random effects out of model (3), we have d;; ~ MVN(XB%, ¥ ;) where

Jk>
Y =ZPp)Z « q;} + R(€2p) * S;‘k

as defined in equation (7). The prior for B* is given by equation (4), which is a mixture of an N(0, 7; )

distribution and a point mass at 0, with % i the indicator for the normal component of the mixture, which

itself has a Bernoulli(r;;) prior d1str1but1on
We can write

f(B,Jk |d]k7 B* (—i)jk> Q) _/ f(B,,k|’Yl,k, d]ky sz_j)jks Q) f(’Y,ﬂ;k |djk7 B(*_i)_,'ks Q) d’yl'ﬂ;k
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= f(B,jklfV,ﬂ;k =1 d/k, B* z)/k’ Q) Pr(%ﬂ;‘k = lldjk’ B?:i)jk’ )] (14
+ f(Bljl\l%Jk = 0 d/ks B (—i) jk> Q) Pr(%‘t‘k =0|djks B*ﬂ«)jk, Q) (15)

We shall first show that f(B*k|'y,Jk =1 d]k, B ke D) In expressmn (14) is normal with mean p;  and vari-
ance v; ;. Second, we shall show that Pr(y;" = 1|d ko B (i) jko Q) in expression (14) is equal to a;j. Itis trivial
to show that in expression (15) f(B 17 =0, du, BY ;) ;. ) = Ip and Pr(y%, =0ld, BE ;) ;, Q) =1 — i
First note that

f(Bl]kl")/,}k =1 i PR B* (=) jk> Q) x f(d/k|B,Jks B* (—i)jk> ) f(B,/kl'Y,ﬂ;/\ =1
ocexp{—3 (% — X; B, )Y (% — X:Bf)} (16)
XCXp(—E jjk/Tijk)a (17)

where d* =y — X( ,)B ") are the ‘residuals’ after conditioning on the other fixed effect parameters.
Multlplymg expression ( 16) by the constant term

exp[— 3 tr{ (X253 X) (X3 X))~ (X3 X (X5 X) ',
reorganizing the terms within the trace and simplifying yields

A* A
exp[ Z(Bt}k I]kMLE) ljk(szk thMLE)} (18)
where
%
Br;k MLE_(Xl jk X) X Z/kldﬁ(

and Vi = (X35 'X,)7!, as defined in equations (5) and (6) Comblnlng the terms in expressions (18)
and (17) and completlng the square leaves us with exp{— 2(B — 1ij)*/vix }» which is the kernel of an
N(piji, vi) distribution, thus proving the first part.

For the second part, note that Pr('yljk = l\d,k, B e Q) can be written as O;;/(O; + 1), where O,
is the conditional odds of ~ Y= 1 versus v % =0, Wthh can be written as a product of the prior odds
mij/(1 —m;;) and the condltlonal Bayes factor

f(djkw,'ﬂ;k:l B* ,)/‘ksﬂ)
f(djkW,',k 0, B z),k,ﬂ)

All that needs to be done is to show that BF;; simplifies into expression (11).
Consider the numerator of equation (19), which is

Sl =1, B Q)= / B BE o) fOBY Iy = 1) dBY,.

ijk

19)

ijk =

Given that

(| By, BY s O ~MVN(X, Bl + X (i) BE ) s D)

ijk>

and (B "k R "= 1)~ N(0, 73;), some algebraic rearrangements and simplifications followed by the integra-

tion with respect to B/, reveal that

(djkW?;k =1, sz—i)jka )~ MVN(X(*i)B(*—i)jk’ Z:jk + XiX;Tijk)’
or equivalently
@5 175 =1 BE ) 4 D ~MVN(O, S + X, Xi7i0).

It is trivial to show that f(djklyljk =0, B* z),st) in the denominator of equation (19) is an
MVN(X B ;) x> X x) density. Thus, we can wrlte the conditional Bayes factor BF; j as

12k +XiX§Tij1<|_1

BF;; = PRRE

expl—3 (@) {(Zp+ X X[m0~ = X5 151, (20)

Consider the first part of equatlon (20). Multlplylng the numerator and denominator by X7, i 17172, this
simplifies to |Iy + 7 X; X/ X5 | 172 where Iy is an N x N identity matrix, and recall that N is the num-
ber of observed functions. By the properties of determinants, we can rewrite this as the scalar quantity
(1+ T,-ijl/.Eﬁ(l X;)~'/2, which is the first part of equation (11).
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Now consider the exponent in equation (20). Using the well-known identity
S-St =S (V'S )
that holds whenever X =3, + uv’, we can rewrite this expression and perform a series of simplifications
=expl(7i6/2) (1+ 7 X[ X5 X~ {(d5) (53! X; X235 )]
= exp(( /DI XD H{ XD X0 + 75} () S5 X X2 5 R D
l(dﬁ)’EﬁfX,«(X;Ej‘klX,-)*l(X;Zj‘kIX,-)”Xl’.Zﬁ{‘djj{r,-jk
2 X5 X0+ (X235 X))}

)
:exp{%(Bijk,MLE/Vijk)(l + Vije/Ti0 7'},

=exp

which, by letting (; 5 = E?jk’MLE/\/Vijk, gives us the second part of equation (11).
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