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Image data are increasingly encountered and are of growing importance
in many areas of science. Much of these data are quantitative image data,
which are characterized by intensities that represent some measurement of
interest in the scanned images. The data typically consist of multiple images
on the same domain and the goal of the research is to combine the quan-
titative information across images to make inference about populations or
interventions. In this paper we present a unified analysis framework for the
analysis of quantitative image data using a Bayesian functional mixed model
approach. This framework is flexible enough to handle complex, irregular
images with many local features, and can model the simultaneous effects of
multiple factors on the image intensities and account for the correlation be-
tween images induced by the design. We introduce a general isomorphic mod-
eling approach to fitting the functional mixed model, of which the wavelet-
based functional mixed model is one special case. With suitable modeling
choices, this approach leads to efficient calculations and can result in flexi-
ble modeling and adaptive smoothing of the salient features in the data. The
proposed method has the following advantages: it can be run automatically,
it produces inferential plots indicating which regions of the image are associ-
ated with each factor, it simultaneously considers the practical and statistical
significance of findings, and it controls the false discovery rate. Although the
method we present is general and can be applied to quantitative image data
from any application, in this paper we focus on image-based proteomic data.
We apply our method to an animal study investigating the effects of cocaine
addiction on the brain proteome. Our image-based functional mixed model
approach finds results that are missed with conventional spot-based analy-
sis approaches. In particular, we find that the significant regions of the image
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identified by the proposed method frequently correspond to subregions of vis-
ible spots that may represent post-translational modifications or co-migrating
proteins that cannot be visually resolved from adjacent, more abundant pro-
teins on the gel image. Thus, it is possible that this image-based approach
may actually improve the realized resolution of the gel, revealing differen-
tially expressed proteins that would not have even been detected as spots by
modern spot-based analyses.

1. Introduction. Image data are increasingly encountered in many areas of
science and technology, including medicine, defense, robotics, security, and ma-
terials science. Image analysis involves the extraction of meaningful information
from these data.

Some types of image analysis are performed subjectively by an expert user who
is trained to visually extract the important features from the image. For example,
a trained radiographer may inspect a CT scan to determine whether a patient has
a tumor, or a trained pathologist may look at a scanned microscopic slide and
determine the histology of a tumor. Other types of image information can be auto-
matically extracted using a computer-based analysis of the digitized image based
on an expert systems approach. For example, face recognition software can be used
to identify an individual in an image, or optical character recognition software can
be used to ascertain license plate numbers from still images taken at a toll booth.
In these examples, the data are digitized and pattern recognition is used to perform
discrimination, but the analysis is still qualitative in nature because the information
of interest is the presence or absence of particular features in the image, not the
magnitudes of the pixel intensities themselves.

In other image data, the magnitudes of the digitized pixel intensities actually
represent an approximate quantification of some measurement of interest. For ex-
ample, in functional magnetic resonance imaging (fMRI), magnetic images are ob-
tained for serial slices of the brain, and the pixel intensities represent the amount
of oxygenated blood flow to that part of the brain, which is a surrogate measure
for the brain activity level. In 2D gel electrophoresis (2-DE)-based proteomics,
the proteomic content of a biological sample is physically separated on a two-
dimensional polyacrimidic gel by its isoelectric point (pH) and molecular mass.
The gel is scanned to produce an image characterized by spots that correspond to
proteins present in the sample. The intensities of the spots are rough measures of
protein abundance. We refer to this type of image data as quantitative image data
(QID), which is the primary focus of this paper.

A set of QID typically involves multiple scanned images from the same indi-
vidual and/or from different individuals, with intensities observed over the same
two-dimensional (or higher) domain. The overall goal of this type of quantitative
image analysis (QIA) is to combine information across images to make statistical
inferences about populations or about the effects of certain interventions on the
populations represented in the images. One important specific goal of QIA is to
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identify which regions of the image differ significantly across treatment groups
or populations. For example, in fMRI we might analyze images from individuals
performing various functions in order to determine which parts of the brain are
typically active during each activity, or we might wish to distinguish between dif-
ferent populations of patients with respect to their brain activity during a given
activity, for example, in response to visual stimulus for children with and without
attention deficit disorder. In proteomics, we aim to find which regions of the gel,
and thus which proteins, are differentially expressed between cases and controls in
a case-control study.

These image data sets are enormous in size and complex in nature, presenting
numerous challenges in terms of storing, managing, analyzing and viewing the
data. It is not uncommon to have hundreds or thousands of images in a given data
set, with each image sampled on a grid of tens of thousands to millions of pixels.
Managing and viewing data sets of this size is difficult; performing rigorous sta-
tistical analyses on the data is particularly challenging. Before statistical analysis
can be performed, the raw, digitized images must undergo a number of processing
steps, including alignment, background correction, normalization, denoising and
artifact removal. These steps may involve technology-specific methods, and must
be done before any further analysis takes place. We will not discuss preprocess-
ing methods in detail in this paper, but will assume the researchers have applied
suitable processing methods to the data before using the QIA methods we describe.

Feature extraction vs. image-based modeling: Researchers frequently use a fea-
ture extraction approach to analyze QID. They are motivated by the premise that
the relevant information in the images is contained in well defined, discrete fea-
tures that can be extracted by computing numerical summaries according to their
estimated feature structure. The steps of a feature extraction approach are to iden-
tify the salient features in the images, quantify each feature for each individual,
and then use standard univariate and multivariate statistical methods to determine
which features are associated with the factors of interest. For example, in fMRI,
the preprocessed pixel intensities can be integrated within predefined Regions of
Interest (ROI), for example, brain regions, and then these regions can be analyzed
to determine which regions are related to the underlying activity or population.
In 2-DE proteomics, a spot-detection algorithm estimates distinct protein spots in
the images. The protein spots are quantified and then surveyed to determine which
are differentially expressed. This approach is computationally efficient because it
reduces the data from complex, high-dimensional images to a vector of spot inten-
sities, and can retain the relevant information contained in the QID, provided that
all the salient features are properly detected and quantified.

The problem with this approach is that any information in the image not con-
tained in one of the feature summaries will be completely lost to the analysis. In
fMRI, there may be important differences within subregions of the predefined re-
gions of interest that could be missed by integrating the entire region. In 2-DE,
spot detection methods are not perfect and may fail to detect some differentially
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expressed proteins as distinct spots. One of the inherent dangers of this problem is
that the researchers may never be aware that they missed anything—that there was
information of significance in their data that was missed because of inadequate
feature extraction.

An alternative to feature extraction is to model the images in their entirety us-
ing a suitable statistical modeling framework, which is a challenging endeavor
we call an image-based modeling approach. To be appropriate for image-based
modeling, an analytic method must possess the following three major character-
istics: (1) sufficient flexiblity and adaptability to accommodate the local features
that tend to characterize these complex, irregular data; (2) the ability to appropri-
ately borrow strength spatially across the image; and (3) enough computational
efficiency to be feasibly applied to data sets of this magnitude. Some examples
of recently published image-based modeling methods include those of Reiss and
Ogden (2009), who constructed a generalized linear model method for image pre-
dictors, and Smith and Fahrmeir (2007), who analyzed fMRI data using Bayesian
variable selection on image pixels and an Ising prior to model spatial correlation
among the variable selection parameters. QID can be viewed as functional data
with the two-dimensional domain given by the rows and columns of the image and
the range given by the pixel intensities, and thus can be analyzed using a functional
data analysis [FDA, Ramsay and Silverman (1997)] approach.

Recent work on Functional Mixed Models (FMM) [Guo (2002), Morris et al.
(2003), Morris and Carroll (2006), Morris et al. (2006), Morris et al. (2008)] pro-
vides a general modeling framework useful for modeling many types of functional
data, but has not yet been adapted for use with image data. In this paper we present
a unified, Bayesian image-based analysis approach for QID based on a version of
the FMM suitable for higher dimensional image data. The model fitting is done
using an isomorphic transformation approach, which we define and introduce in
Section 3.2. The method can simultaneously model the effects of multiple factors
on the images through fixed effects and can account for correlations between im-
ages that are induced by the design through random effect modeling. The isomor-
phic modeling approach results in efficient calculations and, with suitable trans-
formation, can accommodate nonstationary features in the covariance matrices,
and result in adaptive smoothing and borrowing of strength across pixels in each
dimension while the inference is performed. The method yields posterior proba-
bilities of specified effect sizes that can be interpreted as local false discovery rates
[FDR, Benjamini and Hochberg (1995), Storey (2003)]. The posterior probabili-
ties can be used in Bayesian inference to flag regions of the curves as significant
while considering both practical and statistical significance and controlling the
FDR. The software to implement this method can be run automatically with little
user input, and is efficient enough to handle even very large image data sets. Al-
though this method is generally applicable to all QID, in this paper we focus on
2-DE data. We show that this adaptive, image-based approach can find results that
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would have been missed with standard spot-level analyses, and may extract more
protein information from the gels than was previously known to be present.

In Section 2 we discuss image-based proteomics and standard analysis ap-
proaches, and introduce the brain proteomics data set that we consider in this paper.
In Section 3 we describe the methodology: we overview functional mixed models,
describe our general isomorphic approach to model fitting, and present the isomor-
phic functional mixed model for higher dimensional image data. Also, we describe
how to conduct Bayesian FDR-based inference using the output data and present
an image compression approach that can be used optionally to speed up calcu-
lations. In Section 4 we apply this method to the brain proteomics data set and
compare and contrast results with a feature extraction approach. We finish with a
discussion of the implications of our results for 2-DE proteomics and as a general
methodology for quantitative image data analysis in Section 5.

2. Image-based proteomics data.

2.1. Introduction to proteomics. Over the past two decades, advances in ge-
nomics have fueled increased interest in the field of proteomics. Proteomics dif-
fers from genomics in that the former field involves the direct measurement of
proteins rather than their precursors, genes and messenger RNA. Our focus is on
the use of proteomics for biomarker discovery, which involves the measurement
of the relative abundance of proteins across different samples to determine which
are differentially expressed across groups or correlated to a factor of interest. The
proteins of interest can then be validated and further studied for possible clinical
applications, for example, for early detection of cancer or as markers of response
to a particular cancer therapy. Various types of proteomics data can be consid-
ered quantitative image data, including liquid chromatography–mass spectrometry
(LC–MS) and 2D gel electrophoresis (2-DE).

While LC–MS is growing in importance, the major workhorse in biomarker dis-
covery proteomics to date has been 2-DE. The process of 2-DE involves staining
and denaturing the biological sample, running it through a polyacrimidic gel, and
separating the proteomic content of the sample by isolectric point (pH) and then
by molecular mass. The gel is then digitally scanned to produce an image of the
stained spots that correspond to proteins present in the sample, which are double
indexed by their molecular mass and pH. The spots on the gel physically con-
tain the actual proteins, so protein identification is easily accomplished by cutting
out the spot, enzymatically digesting it, and using MS–MS to ascertain its iden-
tity. One variant of 2-DE that may yield more accurate relative quantifications is
2D difference gel electrophoresis [DIGE, Lilley (2003), Karp and Lilley (2005)],
which involves differentially labeling two samples with two different dyes, loading
them onto the same gel, and then scanning the gel with two different lasers, each
of which specifically picks up one of the two dyes. When comparing two groups,
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paired samples from each group can be run on the same gel, effectively condition-
ing the gel effect out of the analysis. In more general problems, one dye (the active
channel) can be used for the primary sample and the other dye (the reference chan-
nel) used on some common reference material used on all gels so that it may serve
as an internal normalization factor.

2-DE has been criticized for various perceived limitations of the technology,
including its limited ability to measure proteins with medium or low abundance
or to resolve co-migrating proteins with similar pH/mass combinations [Gygi et
al. (2000)]. Although the technology itself may possess some technical limitations,
a major factor limiting the realized potential of 2-DE is a lack of efficient and
effective algorithms to process and analyze the gel images. More effective analytic
methods that better extract proteomic information from the gel images may help
the technology more fully realize its potential.

2.2. Spot-based analysis of 2-DE proteomic data. Nearly all existing 2-DE
gels are analyzed using a feature extraction approach whereby spots are detected
and quantified for different gel images and then analyzed to ascertain which are
differentially expressed. The success of a feature extraction approach depends on
the effectiveness of the feature detection and quantification method used and, un-
til recently, the predominant approaches used for spot detection and quantification
had major problems. Traditional approaches based on spot detection on individ-
ual gels followed by matching spots across gels suffer from problems with miss-
ing data, spot detection errors, spot matching errors and spot boundary estimation
errors [Clark and Gutstein (2008), Morris, Clark and Gutstein (2008)]. The abun-
dance of these errors may be partially responsible for some researchers concluding
the technology is ineffective. In recent years, alternative spot detection strategies
have been developed that mitigate these errors to a degree, and include Pinna-
cle, a method we have developed [Morris, Clark and Gutstein (2008), Morris et
al. (2010)], and commercial packages SameSpots by Nonlinear Dynamics (New-
castle upon Tyne, UK), Redfin Solo by Ludesi (Malmo, Sweden) and Delta2D
by Decodon (Greifswald, Germany). While improving from past methods, these
spot-based approaches are still far from perfect, and, in particular, still have some
difficulty resolving distinct co-migrating proteins that are present in the same spot.
Thus, there may be more to gain by using an image-based modeling approach.

2.3. Image-based analysis approaches for 2-DE. Spot-based approaches are
almost universally used for the analysis of 2-DE data. We know of only one paper
in the current literature that describes the application of an image-based model-
ing approach. Faergestad et al. (2007) presented a pixel-based method for pairwise
analysis of 2-DE data that involves the application of partial least squares regres-
sion (PLSR) to the vectorized gel images (after preprocessing). Faergested et al.
used a jacknife procedure to conduct inference, repeatedly applying the PLSR to
each leave-one-out cross-validation sample and then performing a t-test at each
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pixel using the cross-validation regression coefficients as the data. In order to avoid
flagging pixels that were statistically but not practically significant, they restricted
their attention to pixels with a certain minimum standard deviation across samples.
The general image-based method we introduce in this paper is not limited to pair-
wise inference; it can account for correlation among images from the same subject
or batch; it performs adaptive smoothing as part of the estimation and inference;
and it yields rigorous unified FDR-based Bayesian inference that simultaneously
accounts for both statistical and practical significance. Our method can be applied
to any type of image-based proteomics data, including LC–MS, 2-DE and DIGE.

2.4. Motivating example: Cocaine addiction brain proteomics study. The
methods we develop in this paper are applied to proteomic data from a neuro-
biology study on cocaine addiction. The study aimed to identified neurochemical
changes in the brain that are associated with the transition from nondependent drug
use to addiction. The addiction process is conceptualized as an increasing motiva-
tion to seek drugs, resulting in increased drug intake, loss of control over drug
intake and compulsive drug taking. Previous studies suggest that prolonged expo-
sure to cocaine or opiate drugs leads to increased self-administration and a pro-
nounced elevation in reward thresholds [Leith and Barrett (1976), Kokkinidis,
Zacharko and Predy (1980), Markou and Koob (1992), Schulteis et al. (1994)].
Neurochemical changes in parts of the basal forebrain structure, the extended
amygdala, parallel these decreases in the function of the reward system [Parsons,
Koob and Weiss (1995), Weiss et al. (1992), Heinrichs et al. (1995), Richter and
Weiss (1999)]. These data suggest that substance dependence or addiction pro-
duces a pronounced dysregulation of the brain’s reward systems, and that neu-
rochemical changes in the extended amygdala may provide a substrate for such
dysfunction. The neurochemical changes may involve cellular effects at the trans-
lational and post-translational levels that alter protein expression and function, and
thus may be detected by proteomic analysis.

An animal study to investigate these concepts used a model developed by
Ahmed and Koob (1998). The animal model was based on rats that were trained
to obtain cocaine by pressing a lever. Six rats were given short durations of
drug access (1 hour/day), and 7 rats were given long durations of drug access
(12 hours/day). The study included 8 control rats. The rats were eventually euth-
anized, and their brain tissue was harvested and microdissected to extract various
regions of the extended amygdala. Tissues from the brain samples were then sub-
jected to 2-DE to assess their proteomic content. The goal was to compare and
contrast protein expression and modification associated with excessive levels of
cocaine intake and to compare tissues from animals given long versus short access
to the drug. The data we analyzed for this paper were obtained from the the central
nucleus region of the extended amygdala. The data set contains a total of 53 gels
from 21 rats, with roughly 2–3 gels per rat.
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3. Methods. In this section we review previous work on functional mixed
models and wavelet space modeling for 1D functional data, and then discuss how
this approach can be used with other transformations, that is, not just wavelets.
Thereafter, we describe how to adapt this method to model image data and discuss
how to perform rigorous FDR-based Bayesian inference from its output.

3.1. Functional mixed models and wavelet-based modeling. For background,
here we describe the wavelet-based functional mixed models method (WFMM) of
Morris and Carroll (2006). Suppose we observe a sample of N curves Yi(t), i =
1, . . . ,N , each defined on a compact set T . The FMM is given by

Y(t) = XB(t) + ZU(t) + E(t),(1)

where Y(t) = {Y1(t), . . . , YN(t)}′ is a vector of observed functions, “stacked”
as rows. Here, B(t) = {B1(t), . . . ,Bp(t)}′ is a vector of fixed effect functions
with corresponding N × p design matrix X, U(t) = {U1(t), . . . ,Um(t)}′ is a vec-
tor of random effect functions with corresponding N × m design matrix Z,
and E(t) = {E1(t), . . . ,EN(t)}′ is a vector of functions representing the resid-
ual error processes. The effect functions measure the partial effect of the cor-
responding covariate at position t of the functions. The set of random effect
functions U(t) is a realization from a (mean zero) multivariate Gaussian process
with m × m between-function covariance matrix P and within-function co-
variance surface Q(t1, t2), denoted by U(t) ∼ M G P(P,Q) and implying that
cov{Ub(t1),Ub′(t2)} = Pbb′Q(t1, t2). The residual errors are assumed to follow
E(t) ∼ M G P(R,S), independent of U(t). The random effect or residual error por-
tions of the model can be stratified to allow covariances indexed by some factor,
ZU(t) = ∑H

h=1 ZhUh(t) with Uh(t) ∼ M G P(Ph,Qh) or E(t) = ∑C
c=1 VcEc(t)

with Vc a vector whose ith element is 1 if curve i is from stratum c and Ec ∼
M G P(Rc, Sc).

In practice, observed functional data are sampled on some discrete grid. Assum-
ing all observed functions are sampled on the same fine grid t = (t1, . . . , tT ), the
discrete version of (1) is

Y = XB + ZU + E,(2)

where Y is an N × T matrix of observed curves on the grid t, B is a p × T

matrix of fixed effects, U is an m × T matrix of random effects, and E is an
N × T matrix of residual errors. Following Dawid (1981), U follows a matrix
normal distribution with m × m between-row covariance matrix P and T × T

between-column covariance matrix Q, which we denote by U ∼ M N (P,Q), im-
plying cov(Uij ,Ui′j ′) = Pii′Qjj ′ . The residual error matrix E is assumed to be
M N (R,S). The within-random effect curve covariance surface Q and residual
error covariance surface S are T × T covariance matrices that are discrete approx-
imations of the corresponding covariance surfaces in T × T .
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Morris and Carroll (2006) used a wavelet basis modeling approach to fit the
model (2), which involves three steps. First, a fast algorithm called the discrete
wavelet transform [DWT, Mallat (1989)] is applied to each of the N observed
functions on grid t to yield a vector of T wavelet coefficients for each function,
effectively rotating the data axes to transform the data into the wavelet space. Sec-
ond, a Markov chain Monte Carlo (MCMC) procedure is used to obtain posterior
samples from a wavelet-space version of model (2). The wavelet-space covariance
matrices for the random effect functions and residual errors are modeled as diago-
nal, but with different variances for each wavelet coefficient, and spike-slab priors
are assumed on the fixed effects’ wavelet coefficients. These assumptions are par-
simonious, yet accommodate nonstationary features in the data-space covariance
matrices Q and S and induce adaptive regularization of the fixed and random effect
functions, Ba(t) and Ub(t) [Morris and Carroll (2006)]. Third, the inverse DWT is
applied to the the posterior samples of the wavelet-space parameters to yield pos-
terior samples of the parameters in the data-space model (2), which can be used to
perform Bayesian inference.

3.2. Isomorphic modeling of functional mixed models (ISO-FMM). The
WFMM is just one example of a general approach to fitting functional mixed
models we call an isomorphic approach (ISO-FMM), which we introduce here.
The same basic three-step approach underlying the WFMM can be applied us-
ing isomorphic transformations not involving wavelets if desired. We define an
isomorphic transformation as one that preserves all of the information in the orig-
inal data, that is, is invertible. More precisely, given row vector y ∈ �(T), we
say a transform f :�(T ) → �(T ) is isomorphic if there exists a reverse trans-
form f −1 such that f −1{f (y)} = y. The wavelet transform is isomorphic because
IDWT(DWT(y)) = y, but isomorphic transformations can be constructed in other
ways as well, for example, by using other basis functions including Fourier bases,
spline bases and certain empirically determined basis functions like functional
principal components.

Suppose we observe N functions all on the same fine grid t of length T , result-
ing in N ×T data matrix Y whose rows are the observed functions and columns in-
dex the grid locations. The following steps describe the general steps of a Bayesian
implementation of the ISO-FMM for functional data:

1. Transform each of the rows of Y using an isomorphic transformation f , repre-
sented as D = f (Y ), with f (·) applied to a matrix implying here the transform
f is applied separately to each row. Rather than indexing positions within the
curve, the columns of D will index items in the transformed space, for exam-
ple, basis coefficients. We can think of the induced functional mixed model in
the transformed space with the columns of D,B∗ = f (B),U∗ = f (U), and
E∗ = f (E) indexing coefficients in the alternative space. We refer to this as the
transformed-space FMM.



ISO-FMM FOR IMAGE DATA 903

2. Apply an MCMC procedure to the transformed-space FMM to obtain posterior
samples of all of its parameters. This requires specification of (a) parsimonious
assumptions on the covariance matrices Q∗ and S∗ that are sufficiently flexible
to capture important features of Q and S, and (b) a prior distribution on the
fixed effects in the transformed-space FMM to induce effective regularization
of the fixed effect functions B∗.

3. Apply the inverse isomorphic transform f −1 to the posterior samples of the
functional quantities in the transformed-space FMM to obtain posterior samples
from the original data-space FMM (2), where Bayesian inference is performed.

This approach could also be applied in a frequentist context. That would involve
fitting the transformed-space model with some explicit roughness penalties in ap-
propriate places, for example, the fixed and random effect functions, to induce
adaptive smoothing, and then transforming the estimated quantities back to the
data space. This would easily yield estimates, but more work would need to be
done to obtain inferential quantities.

The use of an isomorphic transformation ensures that the representation in the
transformed data retains all of the information contained in the original data, that
is, is “lossless,” and thus any basis coefficients can be considered as transformed
raw data rather than estimated parameters. Thus, the transformed-space model is
isomorphic to the data-space model. This allows us to perform the modeling in the
transformed space, where it may be possible to perform modeling and regulariza-
tion more parsimoniously and conveniently, and yet obtain valid inference in the
data-space model, where the parameters are more clearly interpretable.

For many isomorphic transformations, it is possible to assume parsimonious
structures for Q∗ and S∗ in the basis space and still accommodate a rich class of
structures for data space within curve covariance matrices Q and S. For example,
using a Fourier transform, any stationary covariance matrix can be represented
by uncorrelated Fourier coefficients, so diagonal Q∗ and S∗ are fully justified if
we are willing to assume stationarity in Q and S. Diagonal assumptions on Q∗
and S∗ allow the transformed-space FMM to be fit one column at a time, making
the procedure highly parallelizable and reducing the memory requirements of the
software. This assumption may also be justifiable in some empirically-determined
basis spaces such as FPC. For wavelets, the whitening property of the transform
makes diagonal Q∗ and S∗ a reasonable working assumption that accommodates
many commonly encountered nonstationary features. For a given isomorphic trans-
formation, one must decide what parsimonious assumptions are reasonable in the
basis space, and carefully consider what constraints these assumptions induce in
the data space.

Another advantage of transformed-space modeling is that for many isomorphic
transforms, there are natural prior distributions on basis space coefficients that can
induce regularization of the functional effects in the model and effectively act like
roughness penalties. For example, with wavelets, a sparsity prior that has a spike
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at zero and medium-to-heavy tails like a spike-slab prior leads to adaptive regular-
ization of the underlying effect function. Spline bases are frequently regularized
by second-order penalties, which can be induced by a Gaussian prior. First-order
penalties can be induced by double-exponential priors.

Although orthonormal linear isomorphic transformations are convenient to use
because they represent a simple rotation of the axes, they are not the only pos-
sibility. The transform does not have to be orthonormal or even linear. With an
orthonormal transform, i.i.d. white noise has the same distribution and total en-
ergy in both the data and basis space, but these are not necessary properties for
the FMM. With linear transforms [f (Y ) = YW ′ for some matrix W ′], a Gaussian
model in the data space induces a Gaussian model in the transformed space, and
vice-versa, but this is also not absolutely necessary for valid modeling. For ex-
ample, one could specify a Gaussian model in the transformed space that is used
for the fitting, and this would correspond to some non-Gaussian model in the data
space that might not have a simple closed form, but which could still be a valid
and reasonable data-space likelihood.

If the set of functions jointly have a very sparse representation in the chosen ba-
sis space, it may be possible and advantageous to use an approximately isomorphic
transformation of lower dimension that still retains almost all of the information
for the original functions. We describe a way to perform this compression in the
multiple function context in Section 3.5.

Many methods in the existing statistical literature use a basis function approach
to represent functions or vectors, but rather than transformed data the coefficients
are typically treated as parameters to estimate and the transforms are not isomor-
phic but lower rank projections. There are some methods in the current statistical
literature that effectively use an isomorphic modeling approach [e.g., wavelet re-
gression, Clyde, Parmigiani and Vidakovic (1998); spectral analysis of stationary
time series, Diggle and Al Wasel (1997); nonisotropic modeling of geostatistical
data, Sampson and Guttorp (1992)]; however, to our knowledge, this has not been
discussed previously as a general modeling strategy. Our intended contributions
here are to (1) explicitly offer an isomorphic approach as a general modeling strat-
egy and (2) apply this approach to functional mixed modeling.

3.3. ISO-FMM for quantitative image data. In this section we introduce
a functional mixed model for image data, describe how to model image data using
our isomorphic transformed-space approach, and provide implementation details
using higher dimensional wavelet transforms. Even though these results hold gen-
erally for higher dimensional images, we present the results for 2D images for ease
of exposition.

3.3.1. Functional mixed models for quantitative image data. Suppose we have
a sample of N images, Yi, i = 1, . . . ,N , with each Yi a T1 × T2 matrix contain-
ing the image intensities sampled on a regular, equally-spaced two-dimensional
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grid (t1, t2) with t1 = (t11, . . . , t1T1)
′ and t1 = (t21, . . . , t2T2)

′. A functional mixed
model for these image data, with (t1, t2) a coordinate on the grid, can be written as

Yi(t1, t2) =
p∑

a=1

XiaBa(t1, t2) +
m∑

b=1

ZibUb(t1, t2) + Ei(t1, t2),(3)

where Ba and Ub are fixed and random effect images, respectively, which mea-
sure the effects of scalar fixed or random effect covariates on the corresponding
location of the image Y , and Ei contains the residual error images. The Ub and
Ei are mean zero Gaussian processes defined on the surface, with corresponding
between-image covariance matrices P and R, respectively, and four-dimensional
within-image covariance surfaces Q(t1, t2, t

′
1, t

′
2) and S(t1, t2, t

′
1, t

′
2) summarizes

the covariance between locations (t1, t2) (t ′1, t ′2) of the random effect and residual
error images, respectively.

Let each image be represented by a row vector of length T1 ∗T2, yi = {vec(Yi)}′,
where vec is the column stacking vectorizing operator. If we let Y be the
N × T (= T1 ∗ T2) matrix whose rows contain the vectorized images, then the
discrete image mixed model can be written as

Y I = XBI + ZUI + EI ,(4)

with each row of BI and UI containing one of the vectorized fixed or random ef-
fect images, respectively, that measure the effect of a scalar fixed or random effect
covariate on the corresponding location of the image, and with the rows of EI con-
taining the vectorized “residual error images.” The columns index the pixels in the
image. The superscript “I” simply is a reminder that these quantities are based on
images. As before, we assume that UI ∼ M N (P,Q) and EI ∼ M N (R,S), with
P and R being m × m and N × N matrices defining covariances between images,
and Q and S being T × T within-function two-dimensional covariance matrices
for the random effects and residuals that model the covariance between different
positions within the images. For example, Q{t1 + (t2 − 1) ∗T1, t

†
1 + (t2 − 1)† ∗T1}

describes the covariance between UI
b (t1, t2) and UI

b (t
†
1 , t

†
2 ). Note that any reason-

able structure on these within-image covariance matrices should not just model the
autocovariance based on the proximity within the vector yi , but rather the proxim-
ity within the higher dimensional image Y I

i , that is, in all dimensions.

3.3.2. ISO-FMM for quantitative image data. The ISO-FMM approach for
1D functions described in Section 3.2 can be applied to QID, as well, using iso-
morphic transforms and inverse transforms that operate on the higher dimensional
functions, for example, images. The covariance assumptions in the transformed
space and the regularization prior distributions should be chosen to induce ap-
propriate spatial correlation, adaptive smoothing and borrowing of strength in all
dimensions.
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The isomorphic transform f in the image space will map the T = T1 ×T2 pixels
to a set of alternative transformed-space coefficients, DI

i = f (Y I
i ). This transform

can be constructed a number of different ways. One natural way is to take tensor
products of suitable 1D transforms, leading to a separable transform. It is also pos-
sible to use special bases constructed for image data. Depending on the resolution
of the images and transform used, computational feasibility can become an issue
because the transform will have to be applied to all N observed images as well as
to all p fixed effect images for each of M posterior samples. After transformation,
a model is then proposed in the transformed space.

If the transform is linear, then the Gaussian assumptions from (4) hold in both
the data and transformed space, and our transformed-space model is given by

DI = XBI∗ + ZUI∗ + EI∗,(5)

with the rows of DI ,BI∗ = f (BI ),UI∗ = f (UI ), and EI∗ = f (EI ) containing
the transformed representations for each of the corresponding image-based quan-
tities in (4), with UI∗ ∼ MN(P,Q∗) and EI∗ ∼ MN(R,S∗). As before, f (A)

for some matrix A means applying the transformation f sequentially on the rows
of A. If a separable linear transform is used, then the linear transform matrix for the
vectorized images can be explicitly defined as follows. Suppose we obtain a matrix
of coefficients DI

i from the sampled image Y I
i by applying a linear transform W1

to the rows of the image and W2 to the columns, that is, DI
i = W1Y

I
i W ′

2. This
transformation can be explicitly represented as di = yi W ′, where yi = vec(Y I

i )′
and di = vec(DI

i ) are the vectorized image and coefficient matrix, respectively,
W ′ = (W2 ⊗W1) is the linear transformation matrix, and ⊗ is the Kronecker prod-
uct. This representation makes it easy to explicitly see the connections between the
data-space and transformed-space matrix models (4) and (5) for the QID context as
DI = Y I W ′, BI∗ = BI W ′, UI∗ = UI W ′, and EI∗ = EI W ′, and Q∗ = W ′QW
and S∗ = W ′SW . If W1 and W2 are orthogonal, then it follows that W is also
orthogonal. These results generalize to general r-dimensional functions stacked as
vectors using W ′ = (Wr ⊗ Wr−1 ⊗ · · · ⊗ W1).

3.3.3. Implementation details using wavelets. The same properties that make
wavelet bases convenient for isomorphic modeling in 1D functional data (fast cal-
culations, compact support, whitening property, joint frequency–time representa-
tion, sparse representations for broad classes of data) also make them useful for
modeling QID. Here, we will describe the implementation details for ISO-FMM
using higher dimensional wavelet transforms to construct the isomorphic transfor-
mations, which involves three factors: choice of transform, specification of covari-
ance structure, and regularization prior.

There are various ways to construct isomorphic transforms for image data using
wavelet bases. These transforms can be separable or nonseparable. A separable, or
rectangular, transform is easily constructed by applying the 1D DWT separately
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to each row and each column of the image. As mentioned in Section 3.1, after ap-
plying the wavelet transform to a vector of data, the resulting wavelet coefficients
are double-indexed by scale j = 1, . . . , J and location k = 1, . . . ,Kj . If we apply
a separable 2D wavelet transform, each coefficient is quad-indexed by row scale j1
and location k1, and column scale j2 and location k2.

Nonseparable transforms can also be used. Although they are not represented
as simple tensor products of 1D transforms, they are constructed using linear op-
erators, and so still represent a linear transformation. The most commonly used
nonseparable wavelet transform is a square transform. This type of decomposition
yields three types of wavelet coefficients at each scale j = 1, . . . , J , correspond-
ing to horizontal, vertical and diagonally-oriented wavelet bases. In this case, the
wavelet coefficients are triple-indexed by scale (j = 1, . . . , J ), orientation {l = 1
(row details), 2 (column details), 3 (2D details)} and location (k = 1, . . . ,Kjl). The
square wavelet transform tends to better model local behavior and leads to more
parsimonious representations than the rectangular transform, and so is commonly
used in practice. With the basis functions aligned with the principal axes (horizon-
tal, vertical and diagonal), a disadvantage of the square transform is that sometimes
it does not efficiently represent smoother contours or features of the images that do
not align with the principal axes [Do and Vetterli (2001)]. This leads to less effec-
tive adaptive smoothing for images with these types of features. Other 2D wavelet
transforms have been constructed for this purpose and could be used in place of
the square transform, for example, curvelets [Candes and Donoho (2000)], con-
tourlets [Do and Vetterli (2005)] or qincunx wavelets [Feilner, Van De Ville and
Unser (2005)]. We choose to use the square nonseparable wavelet transform for
2-DE data because the key features of the images, the spots, are aligned with the
horizontal and vertical axes and so should be well represented by them. We found
them to be more efficient than the rectangular separable transform which contains
many long, thin basis functions constructed by combining a low frequency basis
in one dimension (small j ) and high frequency basis in the other (large j ).

Again, motivated by the whitening property of the wavelet transform, we
model the wavelet coefficients as independent, that is, Q∗ = diag(qjlk) and S∗ =
diag(sjlk), allowing each coefficient triple-indexed by its scale j , orientation l and
location k to have its own variance component. The independence leads to parsi-
monious modeling, while the heteroscedasticity accommodates nonstationary spa-
tial features in the data space matrices Q and S. In Supplementary Material, we
illustrate through plots and movies [Morris (2010)] the effective spatial covariance
structures of Q and S induced by independent heteroscedastic wavelet space mod-
els for our 2-DE data. It accommodates spatial covariance in all directions, based
on proximity horizontally, vertically and diagonally, and the strength of this spa-
tial covariance is allowed to vary across different parts of the image. This adaptive
handling of spatial correlation is important in 2-DE, since we expect strong au-
tocorrelation within spots that rapidly falls off outside of the spot, and we expect
a more slowly decaying autocorrelation in nonspot background regions of the gel.
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Further, the structure allows different image-to-image variances for different pix-
els in the image, which is important to obtain accurate pixelwise inference, since
we expect different protein spots to have different variances. These principles gen-
eralize to higher dimensional images when the corresponding higher dimensional
DWT is used for transformation.

We assume the spike-Gaussian slab prior on the wavelet coefficients for the
fixed effects, which is written as

B∗
ajlk = γ ∗

ajlk N (0, τajl) + (1 − γ ∗
ajlk)I0,

(6)
γ ∗
ajlk = Bernoulli(πajl),

with regularization parameters π and τ indexed by covariate a, scale j and orienta-
tion l, and estimated from the data using the empirical Bayes procedure similar to
Morris and Carroll (2006), as detailed in a supplementary article [Morris (2010)].
This induces adaptive smoothing of the fixed effect images Ba(t1, t2). By index-
ing the parameters by covariate, we allow for different regularization parameters
for different fixed effect images, and by indexing by scale j and orientation l, we
are able to naturally accommodate different degrees of smoothness horizontally,
vertically and diagonally within the fixed effect images.

After specifying vague proper priors on the variance components, we are left
with a fully specified Bayesian model for the transformed-space FMM (2). We
use a Markov chain Monte Carlo (MCMC) procedure to obtain posterior samples
of the transformed-space fixed effect functions B∗, and then apply the inverse 2D
wavelet transform to them to obtain posterior samples of the data-space fixed ef-
fect functions B , which are used for Bayesian inference. The MCMC details are
presented in the supplementary article by Morris (2010).

3.4. Bayesian FDR-based inference. Given the posterior samples of Ba(t1, t2),
the fixed effect image describing the effect of covariate Xa on the images as a func-
tion of position (t1, t2), we can perform Bayesian inference to flag significant re-
gions of the curves by extending the approach used in Morris et al. (2008), as
follows.

First, we must define the effect size that is of practical significance, say, δ.
For example, if the image intensities are modeled on a log2 scale, then δ = 1
would correspond to a two-fold difference. From the posterior samples of B , we
can compute the posterior probability of an effect size of at least δ, pδ

a(t1, t2) =
Prob{|Ba(t1, t2)| > δ}, which can be plotted in what we call a probability discov-
ery image, and define significant regions of the image as those with pδ

a(t1, t2) > φ

for some threshold φ. The quantities 1 − pδ
a(t1, t2) can be considered q-values,

or estimates of the local false discovery rate [Storey (2003)], as they measure the
probability of a false positive if position (t1, t2) is called a “discovery,” defined as
a region in the image with at least δ effect size.
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The significance threshold φ can be determined using classical Bayesian utility
considerations such as those of Mueller et al. (2004) based on the elicited rela-
tive costs of false positive and false negative errors. Alternatively, it can be set
to control the average Bayesian FDR, in the same manner as in Morris et al.
(2008). For example, suppose we are interested in finding the threshold value
φδ

α that controls the overall average FDR at some level α of the original image
on a continuous domain in the Lebesgue sense, meaning we expect the ratio of
Lebesgue measures of the falsely discovered regions to regions flagged as discov-
eries to be no more than α. When our interest is on the discrete grid of pixels
sampled in the observed image, we can estimate this threshold as follows. We
drop the index a from all quantities to declutter the notation. For all image pixel
locations (t1j , t2j ), j = 1, . . . , T , in the vectorized probability of discovery image
pδ = [pδ

j ; j = 1, . . . , T ] = vec{pδ(t1, t2)}, we first sort pδ
j in descending order

to yield pδ
(j), j = 1, . . . , T . Then φδ

α = pδ
(ξ), where ξ = max{j∗ : j∗−1 ∑j∗

j=1{1 −
pδ

(j)} ≤ α}, which is the maximum index for which the cumulative average of the
sorted local false discovery rates (1 − pδ) is less than or equal to α. The set of im-
age regions T δ

α = {(t1, t2) :pδ(t1, t2) > φδ
α} are then flagged as “significant,” based

on an effect size of δ and an average Bayesian FDR of α. In 2-DE, a map of these
image regions can be forwarded to the spot-cutting robot in order to cut out these
regions of the gel for protein identification.

3.5. Image compression to speed computations. The ISO-FMM approach de-
scribed in Section 3 involves transforming the observed functions or images into
the transformed space and modeling all items in the transformed space, for ex-
ample, all basis coefficients. Our approach and software are sufficiently computa-
tionally efficient enough to perform this procedure, even for quite large data sets.
However, if the chosen transformation leads to sparse representations of the ob-
served images, it may be possible to use a virtually “lossless” approach modeling
a subset of the coefficients and to save a great deal of computational time and mem-
ory overhead. If the transformation leads to a sparse representation, then most of
the basis coefficients are near zero for all images and they could be left out of the
modeling with very little practical effect on the final results, effectively compress-
ing the observed images and all images in the FMM. For example, wavelets lead to
sparse representations of many classes of functional and image data and are rou-
tinely used in signal compression applications, including JPEG images and MPEG
video.

In this section we introduce a compression method that selects which co-
efficients to include in the model in order to preserve a minimum percentage
of the total energy for all images in the data set. This method can be used to plot
the minimum total energy vs. number of coefficients, to help the user mitigate the
trade-off between information and compression. This approach could also be used
with criteria other than total energy.
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After transforming each of N vectorized images to the transformed space
with T coefficients, we are left with the N ×T matrix DI whose rows i = 1, . . . ,N

correspond to the images and columns j = 1, . . . , T correspond to the basis
coefficients. For each row of DI , we square the coefficients, sort them in de-
creasing order, and then compute the relative cusum Cij for each coefficient j .
The quantity Cij represents the proportion of total energy preserved for curve i

if only coefficients of magnitude |DI
ij | and larger are retained. Define the set

J P = {j :Cij > P for all i = 1, . . . ,N} of size T ∗
P = ‖J P ‖ to contain the indices

of the minimal set of coefficients that must be kept to preserve 100P % of the
total energy for each image, with complementary set J ′

P containing the remain-
ing coefficient indices. In the transformed-space FMM, only the T ∗

P coefficients
j ∈ J P would actually be modeled, and zeros would be substituted for the re-
gions of B∗,U∗,E∗,Q∗ and S∗ corresponding to j ∈ J ′

P . One can vary P and
plot P vs. ‖J P ‖ in what we call a compression plot—a useful tool in deciding
how much compression to do. This plot is a multiple-sample analog to the scree
plot, a commonly used tool in principal components analysis. Depending on the
image features and transformation used, extremely high compression levels (100:1
or greater) can retain virtually all information contained in the raw images. Note
that these compression ratios also approximate the savings in memory overhead
required to run the MCMC procedure. Thus, this near isomorphic approach may
be preferable to the full isomorphic approach modeling all coefficients.

4. Application to brain proteomics data. In this section we apply the
wavelet-based ISO-FMM for quantitative image data described in Section 3 to
the brain proteomics data set introduced in Section 2.4.

4.1. Methods. Gel image preprocessing. As described in Section 3, we ob-
tained a total of 53 2D gel images from a total of 21 rats. We used one gel as
a reference and registered the other 52 gels to that reference in order to get the pro-
tein spots aligned across images using RAIN [Dowsey, Dunn and Yang (2008)].
Then, we cropped each registered gel image within the same 646 × 861 region to
exclude parts of the gel that were either corrupted or did not appear to contain any
proteins. From each image we estimated and removed a spatially-varying local
background by subtracting from each pixel intensity the minimum value within
a square formed by a window of +/ − 100 around that pixel in horizontal and
vertical directions. We normalized the image by dividing by the total sum of all
background-corrected pixel intensities on the gel. We conducted both steps as de-
scribed in Morris, Clark and Gutstein (2008). The resulting normalized intensities
were then log2 transformed to yield the images Yi used for the downstream quan-
titative analyses.

Image-based modeling using ISO-FMM. We constructed an isomorphic trans-
formation for the images based on a square nonseparable 2D wavelet transform
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FIG. 1. Compression plot: Plot of minimum proportion of energy preserved for EACH image vs.
number of wavelet coefficients (T ∗) for example 2-DE data set.

using a Daubechies wavelet with four vanishing moments, periodic boundary con-
ditions, and the decomposition completed to J = 6 frequency levels. To investi-
gate image compression, we generated a compression plot (Figure 1) as described
in Section 3.5. Note that we were able to preserve a high level of energy while
retaining a small proportion of coefficients. The top panels of Figure 2 contain
plots of one of the processed 2D gel images (uncompressed and compressed using
P = 0.99,0.975 and 0.95) to demonstrate that the compressed and uncompressed
images look virtually identical. We chose P = 0.975 for our primary analyses,
which modeled the T = 646 × 861 = 556,206 pixels using only T ∗

97.5 = 10,634
wavelet coefficients, for a compression ratio of more than 50:1. As a sensitivity
analysis, we also ran ISO-FMM with compression levels P = 0.95 and P = 0.99,
yielding T ∗

95 = 4958 and T ∗
99 = 26,520 coefficients, respectively, which correspond

to compression ratios of over 100:1 and 20:1. We also considered the rectangular
transform, but found this was not as efficient in representing the 2-DE images,
with 11,384 coefficients required using P = 0.975, so we chose to use the square
transform in our analyses.

Let Yi(t1, t2), i = 1, . . . ,53, be the log2-transformed preprocessed gel images.
We used the following functional mixed model for these data:

Yi(t1, t2) =
3∑

a=1

XiaBa(t1, t2) +
21∑

b=1

ZibUb(t1, t2) + Ei(t1, t2),(7)

where Xia = 1 if gel i is from an animal in group a, 0 otherwise, with the groups
labeled as a = 1 control animals, a = 2 animals with short access to cocaine, and
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FIG. 2. Illustration of compression: Heatmap of a raw uncompressed gel image and corresponding
compressed images with P = 0.99,0.975 and 0.95 (top), along with corresponding posterior discov-
ery images (posterior probability of 1.5-fold expression, bottom) for differences between animals in
control and long cocaine access groups.

a = 3 animals with long access to cocaine. The fixed effect image Ba(t1, t2) rep-
resents the average gel for group a. The random effects were included to model
correlation between gels from the same animal, with Zib = 1 if gel i is from an-
imal b, and Ub(t1, t2) as the random effect image for animal b. We assumed the
random effect functions and residual error functions were i.i.d. (P = R = I ).

After transforming the images to the wavelet space, we fit the wavelet-space
version of (7) as described in Section 3.3. Maximum likelihood estimates were
used for starting values of the MCMC, and vague, proper inverse gamma priors
were assumed for the variance components, centered on the ML estimates with
information equivalent to a sample size of 2. After a burn-in of 1000, we ran the
MCMC for 20,000 samples, keeping every 10th observation. Run on a single Xeon
2.66 GHz processor, this analysis took a total of 16.8 hours when run with P =
0.975 compression, and 10.8 and 34.8 hours, respectively, when run with P =
0.95 and P = 0.99 compressions. Because the method is roughly linear in T ∗,
the number of basis coefficients modeled [Herrick and Morris (2006)] had we not
used compression, this method would have taken approximately 600 hours using
a single processor to obtain the same number of posterior samples. We note that
parallel processing on a network or cluster could have been used to greatly reduce
the run time. Using the 2D-IDWT, the posterior samples of the fixed effects in
the transformed space were projected back into the data space to yield posterior
samples of the fixed effect images Ba(t1, t2).
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Next, we constructed posterior samples for the overall mean gel image,
M(t1, t2) = 1/3{B1(t1, t2)+ B2(t1, t2) + B3(t1, t2)}, and to consider contrasts cor-
responding to the various between-group comparisons. Here we focus on the im-
age corresponding to the difference between the control group and the long co-
caine access group, C13(t1, t2) = B1(t1, t2) − B3(t1, t2) (upper right panel of Fig-
ure 4). Regions of C13(t1, t2) with large negative values correspond to regions with
greater protein expression for animals given a long access to cocaine. Regions
with large positive values correspond to regions with greater protein expression
for the control animals. Using the approach described in Section 3.4, we sought
to identify regions of the gel with at least 1.5-fold difference between groups
[δ = log2(1.5) = 0.5850], while controlling the FDR at α = 0.10.

Spot-based modeling using Pinnacle. To compare our ISO-FMM image-based
approach with a standard spot-based method, we applied Pinnacle [Morris, Clark
and Gutstein (2008)] to these data. First, we aligned and preprocessed the images,
exactly as described above, to make sure that any difference in results was not due
to preprocessing but due to the spot vs. image-based approach. Applying Pinnacle,
we computed the raw mean processed gel, and denoised it using an undecimated
wavelet-based approach. We detected spots based on their pinnacles, defined as
any pixel that is a local maxima in both the horizontal and vertical directions of
the wavelet-denoised average gel whose normalized intensity is greater than the
75th percentile on the gel. Using the Pinnacle graphical user interface, we hand-
edited the spot detection to remove obvious artifacts, and were left with a total
of 752 detected spots. For each gel, we quantified each spot using the maximal
normalized intensity within a 5 × 5 square around the detected pinnacle, and then
averaged intensities over replicate gels from the same animal, yielding a 21 × 752
matrix containing normalized spot quantifications for each of 752 detected spots
for the 21 animals. Using this matrix, we performed t-tests for each pinnacle to
compare the samples from animals in the control and long cocaine access groups,
and then forwarded the p-values into the fdrtool method [Strimmer (2008)] to
obtain the corresponding q-values, or local false discovery rates.

4.2. Results. Results of ISO-FMM image-based analysis. First, to assess
whether the model was flexible enough to model the 2-DE data, we generated a
“virtual gel” by sampling from the posterior predictive distribution for the spec-
ified ISO-FMM (7), plotted in the right panel of Figure 3 along with an actual
gel (left panel). The virtual gel looks remarkably like a real gel, indicating the
ISO-FMM with square 2D wavelet-based modeling is able to capture the salient
features of the gel, and demonstrating the flexibility of this nonparametric model-
ing approach.

Figure 4 summarizes the overall results of the ISO-FMM model fitting. The top
panels contain the posterior means for the overall mean gel image M(t1, t2) and
the control vs. long access contrast image C13(t1, t2). In the contrast image, blue
regions correspond to regions of the gel with higher protein expression for animals
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FIG. 3. Virtual Gel Plot of single gel from data example (left panel) and a virtual gel (right panel),
found by sampling randomly from the posterior predictive distribution of the ISO-FMM used to fit
the sample data. Note that the ISO-FMM is able to sufficiently capture the structure of real 2D gels
so that the virtual gel looks very much like a real gel that could have come from the example data set.

in the long cocaine access group; red and orange regions indicate higher protein
expression for control animals; and yellow regions indicate no difference. Note
that we see a mix of blue and red regions, and most of these regions resemble
protein spots. This is what we would expect to see in well-run gel studies with
differentially expressed protein spots. If most of the effects were all in the same
direction (blue or red), or if the regions were irregular and not spot shaped, then
we might suspect that the results were driven by some artifacts in the data, for
example, background artifacts, which might indicate a problem in the experiment.

The bottom left panel of Figure 4 is the probability discovery plot, p1.5
13 (t1, t2),

measuring the posterior probability of at least 1.5-fold expression differences be-
tween animals in the control and long cocaine access groups with red regions hav-
ing the highest posterior probabilities. The bottom panels of Figure 2 contain this
probability discovery plot for the different compression levels, and demonstrate
that the results are robust to the choice of compression level P . Again, these re-
gions of high probability are shaped like protein spots, as we would expect if they
were marking differentially expressed proteins. Applying the FDR < 0.10 crite-
rion as described in Section 3.4, we flagged all pixels (t1, t2) with p1.5

13 (t1, t2) >

φ1.5
0.10 = 0.757 as differentially expressed. These regions are marked in red in the

bottom right panel of Figure 4. There are 27 contiguous regions flagged, which are
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FIG. 4. ISO-FMM results: Heatmaps of posterior mean of overall mean gel [M(t1, t2), upper left]
and control vs. long cocaine access effect gel [C13(t1, t2), upper right], plus probability discovery
plot [p1.5(t1, t2), lower left] and regions of gel flagged as significant (FDR < 0.10, 1.5-fold, lower
right). Higher intensities are indicated by hotter colors, lower intensities by cooler colors.

summarized in Table 1. This image could be used to inform the spot-picker which
physical regions of the gel to cut out for MS–MS analysis to ascertain the corre-
sponding protein identities. Unfortunately, for this study, the original physical gels
were no longer available, so we could not perform the experiment to discern the
corresponding protein identities.

Results of Pinnacle spot-based analysis. Performing a spot-based analysis, we
flagged a spot as significant if its q-value was less than 0.10, and the effect size
was at least log2(1.5) = 0.5850, indicating at least 1.5-fold difference. This led to
17 differentially expressed spots between animals in the control and long cocaine
access groups, which are summarized in Table 2.

Comparison of Pinnacle and ISO-FMM results. Note that the Pinnacle and ISO-
FMM results are not entirely comparable since they use different criteria; Pinna-
cle flags a spot as significant if the q-value is less than 0.10 (based on a t-test
with point mass null hypothesis) and the effect size is at least 1.5-fold, while the
ISO-FMM flags a region as significant if its posterior probability of a 1.5-fold dif-
ference is large enough to cross the estimated FDR < 0.10 significance threshold.
However, we still found it enlightening to qualitatively compare these results.

Out of the 17 spots flagged as significant by Pinnacle, 13 were contained within
regions flagged by the ISO-FMM analysis. Two of the others have high probabili-
ties of 1.5-fold difference (≈0.50), but that just missed the FDR < 0.10 threshold
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TABLE 1
Results of image-based ISO-FMM analysis: Details for regions flagged as differentially expressed in

image-based ISO-FMM analysis, including coordinates of center of region (xFMM, yFMM),
maximum posterior probability of 1.5-fold change within region (p1.5), coordinates of nearest

detected pinnacle (xPinn, yPinn) and corresponding p-value (pval) and fold-change (FC)

xFMM yFMM p1.5 xPinn yPinn pval FC Comments

403 263 >0.9995 406 264 0.0004 2.6932 Found by both methods
415 257 >0.9995 418 257 0.0003 2.1518 Found by both methods
410 239 >0.9995 410 239 0.0220 1.8648 Found by both methods
393 239 0.9995 393 239 0.0008 2.1049 Found by both methods
401 252 0.9995 405 252 0.0001 1.7319 Found by both methods
386 290 0.9890 381 291 0.0062 2.2087 Found by both methods
405 483 0.9785 407 483 0.0017 1.7544 Found by both methods
398 291 0.9150 407 296 0.0015 1.5016 Found by both methods
405 203 0.8660 405 203 0.0025 1.8578 Found by both methods
391 360 0.8240 389 360 0.0009 1.8170 Found by both methods
343 227 0.8210 341 228 0.0796 1.8084 Found by both methods
712 279 0.8035 711 282 0.0168 1.5134 Found by both methods
727 278 0.7590 728 280 0.0103 1.9038 Found by both methods
831 557 0.8925 835 575 0.0013 1.4495 Fold change too small
399 220 0.8865 402 222 0.0036 1.4560 Fold change too small
109 560 0.8630 120 559 0.0167 1.2412 Fold change too small
232 639 0.8560 240 639 0.0087 1.4723 Fold change too small
797 540 0.8210 799 541 <0.0001 1.4866 Fold change too small
388 335 0.7820 383 333 <0.0001 1.4096 Fold change too small
832 351 0.8540 828 357 0.1466 1.2377 In right tail of major spot
762 238 0.8375 773 243 0.7220 1.0500 In left tail of major spot
144 408 0.9815 160 409 0.9883 1.0011 In left tail of major spot
154 427 0.9775 177 427 0.3312 1.0477 In left tail of major spot
704 332 0.8795 713 338 0.4748 1.0767 In left tail of major spot
559 222 0.9420 562 220 0.4697 1.0558 Between two visible spots
449 251 0.8940 446 257 0.1105 1.2458 Between two visible spots
308 175 0.7985 312 172 0.0471 1.3055 Between two visible spots

of φ1.5
10 = 0.757. The other two were very faint spots with fold changes marginally

greater than 1.5-fold.
Of the 27 regions flagged in the ISO-FMM analysis, 13 have corresponding

pinnacle results. Figure 5 displays one such region, marked by the small box in
Figure 4. We see that this region precisely corresponds to the boundaries of a sin-
gle visible spot, and the Pinnacle location is marked by the “×,” with the “o”
indicating it was flagged as significant by the Pinnacle spot-based analysis. Six
more regions clearly correspond to visible spots in the mean gel that have small
p-values, but estimated fold-changes less than 1.5. The remaining 8 nonmatched
regions corresponded to subsets of detected spots or in the areas between two spots;
four corresponded to regions in the left tail of visible spot, one to a region in the
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TABLE 2
Results of spot-based Pinnacle analysis: Details for spots flagged as differentially expressed in

spot-based Pinnacle analysis, including location (x, y), p-value (pval), q-value (qval) and
fold-change (FC). Also included is the maximum p1.5(t1, t2) from the ISO-FMM within a 5-by-5

neighborhood around the corresponding Pinnacle

x y pval qval FC p1.5 Comments

410 239 0.002 0.008 1.865 >0.999 Found by both methods
418 257 <0.001 0.002 2.152 >0.999 Found by both methods
406 264 <0.001 0.003 2.693 >0.999 Found by both methods
405 252 <0.001 0.001 1.732 0.999 Found by both methods
393 239 0.001 0.004 2.105 0.999 Found by both methods
381 291 0.006 0.014 2.209 0.989 Found by both methods
407 483 0.002 0.007 1.754 0.979 Found by both methods
407 203 0.005 0.013 1.671 0.866 Found by both methods
389 360 0.001 0.005 1.817 0.824 Found by both methods
341 228 0.080 0.068 1.808 0.821 Found by both methods
711 282 0.017 0.027 1.513 0.804 Found by both methods
407 296 0.001 0.007 1.502 0.788 Found by both methods
728 281 0.014 0.024 1.638 0.759 Found by both methods
379 263 0.009 0.018 1.595 0.487 Just missed threshold
257 60 0.062 0.048 1.663 0.463 Just missed threshold
409 163 0.006 0.014 1.504 0.160 FC barely above 1.5
798 177 0.004 0.012 1.543 0.019 FC barely above 1.5, faint spot

right tail of a visible spot, and the remaining three appeared between 2 visible
spots. These results were not found by the spot-based Pinnacle approach.

One interesting part of the gel containing two such regions is indicated by the
large box in Figure 4, and presented in detail in Figure 6. From the mean gel im-
age, we see that this field contains 7 visible protein spots detected by Pinnacle, as
marked by the ×’s. From the other panels, we see two regions flagged as differ-
entially expressed (long access > control) by ISO-FMM, and a third region with
high probability of differential expression but not quite exceeding the FDR = 0.10
threshold φ1.5

0.10 = 0.757. These flagged regions resemble protein spots but do not
correspond to the visible protein spots in the mean gel. Rather, they correspond
to the left tails of the two dominant spots in this field, which both appear to have
slightly extended long tails. The spot-based approach found no significant spots
in this region of the gel, so these discoveries would have been missed had we not
conducted the image-based analysis. Other spots have similar behavior, and their
details can be seen in supplementary Figures 3–10 [Morris (2010)]. A key question
is what these flagged regions could represent.

Interpretation of results. As mentioned in Section 2, a well-known issue in 2-
DE is the presence of co-migrating proteins, that is, distinct proteins that visually
appear to be part of the same protein spot. Studies have shown that some spots
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FIG. 5. Specific Results 1: Posterior mean of overall mean gel (upper left), effect gel (upper right),
probability discovery plot (lower left), and indicating ISO-FMM flagged regions (lower right) for
region marked by small box in Figure 4, with pinnacles for detected spots marked (×), and differential
expression in Pinnacle analysis indicated by a (o). Note that region flagged by ISO-FMM corresponds
to visible spot also detected by Pinnacle analysis.

FIG. 6. Specific Results 2: Posterior mean of overall mean gel (upper left), effect gel (upper right),
probability discovery plot (lower left), and indicating ISO-FMM flagged regions (lower right) for
region marked by large box in Figure 4, with pinnacles for detected spots marked (×), and differential
expression in Pinnacle analysis indicated by a (o). Note that regions flagged by ISO-FMM correspond
to tails of visible spots that themselves are not differentially expressed. These results are not found
by the Pinnacle analysis.
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on a gel can have as many as 5 or 6 distinct proteins [Gygi et al. (2000)]. These
co-migrating proteins can be different proteins or post-translational modifications
of the same protein, which can also be functionally distinct. If two proteins have
similar combinations of pH and molecular mass, it is possible that the proteins
will run together in the same visible spot on the 2-DE. It can be very difficult, and
sometimes impossible, for any spot detection method to deconvolve these multiple
spots into separate protein spots, especially if one of them has considerably higher
abundance than the others. The inability to resolve these co-migrating proteins is
one of the key criticisms levied against 2-DE. The significant regions flagged by
ISO-FMM but not by Pinnacle which appear in the tail of a visible spot or between
two visible spots may indicate differentially expressed co-migrating proteins visi-
bly masked by a more abundant non differentially-expressed protein, and that these
proteins were completely missed by the spot-based analysis. Studies are underway
to confirm this possibility.

In this way, the image-based modeling approach may be able to extract more
protein information from the gels than spot-based approaches. Because spot-based
modeling approaches have been almost universally used to date, this means that
perhaps 2-DE contains more proteomic information than was previously known.
The image-based approach may effectively increase the realized resolution of the
gels and better extract the proteomic information they contain. Further biological
studies are needed to validate these conjectures.

5. Discussion. In this paper we have discussed a general Bayesian method
for quantitative image data based on functional mixed models that uses an isomor-
phic modeling approach. The underlying FMM framework is very general, can
simultaneously model any number of covariates, each having their own fixed ef-
fect image of general form, and can account for correlation between the images
using random effect images and between-image covariance matrices. The results
from the method can be used to perform FDR-based Bayesian inference that takes
both practical and statistical significance into account, and flags significant regions
of the fixed effect images.

Previous work on functional mixed models has been limited to single-dimen-
sional functions; here we have shown how this approach can be applied to images
of dimension 2 or higher. Also, previous work on functional mixed models has
been based on specific modeling strategies using smoothing splines [Guo (2002)]
or wavelets [Morris and Carroll (2006)]. In this paper we have described a gen-
eral modeling strategy that involves using an isomorphic transformation to map
the data to an alternative space, where modeling can be done more parsimoniously
and smoothing or regularization naturally done, and results can be mapped back
to the original data space for final inference. This method, ISO-FMM, contains
WFMM as a special case, but can be also applied much more generally using other
isomorphic transformations. With each proposed transformation, careful thought
needs to be given to the modeling choices and their implications in the data space,
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and thus further work is required to apply this approach using certain other trans-
formations. This general modeling strategy can be used for the 1D FMM, or for
the higher dimensional FMM that is the primary interest of this paper. This iso-
morphic modeling approach is a general strategy with potential for application to
a variety of other contexts.

We introduced a compression method to reduce the dimensionality of the data
that is appropriate when the chosen isomorphic transformation leads to a sparse
representation for all of the images, as is true for wavelets. This compression
method can also be applied to any functional data, 1-D or higher. We have found it
is possible to use compression to speed up the computations by one or two orders
of magnitude, which greatly reduces the memory overhead requirements without
substantively changing the results.

While the method is complex, we have developed general freely available
software (http://biostatistics.mdanderson.org/SoftwareDownload/SingleSoftware.
aspx?Software_Id=70) to implement it that is efficient enough to handle very large
data sets and complex models, and is relatively straightforward to use, considering
the complexity of the method. If the user is satisfied with automatic vague proper
priors and default wavelet bases, then the method can run completely automati-
cally if the user simply specifies the Y,X and Z matrices. Users who wish to use
alternative basis functions can compute the D matrix themselves and feed that into
the program, indicating which groups of coefficients will share common smooth-
ing parameters. The code automatically generates posterior means and quantiles
(default 0.005, 0.01, 0.025, 0.975, 0.99, 0.995) for prespecified contrasts involving
the Ba(t1, t2), plus the posterior probabilities of specific effect sizes pδ

a(t1, t2) for
specified choices of δ {default δ = log2(1.25), log2(1.5), log2(2.0)}. Thus, plots
like those generated in Figure 4 can be quickly generated once the method is run.
The code is continually being updated as the scope of the FMM framework is ex-
tended, so more features will be added in the future, as will an R interface for
running the method.

Applying this method to 2-DE data, we found that the ISO-FMM was able to
find differentially expressed proteins that may be co-migrating proteins that would
not have been found using the usual spot-based analysis approaches. The ISO-
FMM may be capable of extracting more proteomic information from the gels than
was previously known to be there. This method can easily be applied to DIGE data
by just modeling Yi(t1, t2) to be the log ratio of the two channels. Although this
paper focused on 2-DE, the ISO-FMM can be applied to any type of quantitative
image data, including fMRI, LC–MS and other commonly encountered applica-
tions. This rigorous, automated method can be useful in extracting information
and performing inference for quantitative image data.
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SUPPLEMENTARY MATERIAL

Supplement A: Computational details for wavelet-space implementation of
ISO-FMM for image data (DOI: 10.1214/10-AOAS407SUPPA). Computational
details for wavelet implementation of the ISO-FMM for image data, including
empirical Bayes method for estimating regularization parameters, MCMC details
and Metropolis–Hastings details for covariance parameters.

Supplement B: Supplementary figures (DOI: 10.1214/10-AOAS407SUPPB).
Supplementary figures, including a virtual 2d gel simulated from the model,
a demonstration of the spatial covariance structure induced by the model and 8
plots containing zoomed-in results from analysis of application data in certain in-
teresting regions of the gel.

Supplement C: Spatial covariance structure in image WFMM (DOI:
10.1214/10-AOAS407SUPPC). Basic illustration of spatial covariance structure
induced by ISO-FMM with 2D wavelet transforms and independence assumed in
the wavelet space. Basic demonstration described, and some plots provided. Movie
file spatial_covariance.wvm also available as supplementary material to further il-
lustrate these results.

Supplement D: Movie file illustrating spatial covariance structure of ISO-
WFMM with 2D wavelet transform (DOI: 10.1214/10-AOAS407SUPPD). Win-
dows movie file illustrating the nonstationary spatial covariance structure induced
by the ISO-FMM with 2D wavelet bases, with independence assumed among
wavelet coefficients. Description of data yielding this movie is provided in the
file “Spatial Covariance Structure in Image WFMM.pdf,” also available as supple-
mentary material.
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